Способ получения оксида магния

 

Изобретение относится к производству оксида магния, используемого, например, при производстве огнеупорных материалов, в электрохимической и целлюлознобумажной промышленности, в строительстве. Способ получения оксида магния заключается в обработке природного доломита серной кислотой или смесью серной и соляной кислот в молярном соотношении 1:2. После отделения раствора солей магния от осадка осаждают гидроксид магния из раствора щелочным реагентом, обеспечивающим рН 10,6-12, затем отделяют выпавший осадок и осуществляют его термическую обработку при температуре 760-1200oС для получения огнеупорного оксида магния. Изобретение позволяет упростить технологию за счет исключения обжига доломита и использования отходов кислот, а также улучшить качество оксида магния из-за отделения соединений магния от соединений кальция. 1 табл.

Изобретение относится к производству оксида магния, используемого, например, при производстве огнеупорных материалов, в электротехнической и целлюлозно-бумажной промышленности, в строительстве.

Известен способ получения оксида магния, защищенный а.с. СССР 1695622, кл. С 01 F 5/08, опубл. 10.02.1996 г.

Способ заключается в обжиге природного магнезита, выщелачивании спека раствором нитрата аммония, отделении полученного раствора и обработке его аммиаком с получением гидроксида магния и последующей прокалкой.

Недостатками способа являются высокая энергоемкость, т.к. проводится двухкратный обжиг при температуре выше 1000oС, а также высокая стоимость и труднодоступность природного магнезита.

Наиболее близким к заявляемому по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ производства оксида магния и/или продуктов его гидратации, защищенный а.с. СССР 1599304, кл. С 01 F 5/06, опубл. 15.10.1990 г.

Способ включает обработку обожженного доломита при температуре 0-100oС водным раствором органического вещества, отделение осадка от маточного раствора, промывку осадка и его сушку, при этом обработку исходного сырья ведут водным раствором, содержащим моноэтаноламин, и/или диэтаноламин, и/или пиперидины, и/или этилендиамин и соль указанных веществ с соляной, азотной, муравьиной и уксусной кислотами.

Маточный раствор подвергают регенерации диоксидом углерода при рН 7-12, отделяют образовавшийся осадок карбоната кальция, а оставшийся после отделения осадка раствор рециркулируют на стадию обработки исходного сырья.

Недостатком известного способа является сложность технологии из-за обжига доломита, использования дорогих реагентов, их регенерации.

Задача, решаемая предлагаемым изобретением, - создание экологичного способа получения оксида магния.

Технический результат от использования изобретения заключается в упрощении технологии за счет исключения обжига доломита и использования отходов кислот, а также улучшении качества оксида магния из-за отделения соединений магния от соединений кальция.

Указанный результат достигается тем, что в способе получения оксида магния, включающем обработку доломита и отделение раствора от осадка, обработку природного доломита осуществляют серной кислотой или смесью серной и соляной кислот в молярном соотношении 1:2, полученный раствор солей магния отделяют от осадка, осаждают гидрооксид магния из раствора щелочными реагентами, обеспечивающими рН 10,6-12, отделяют выпавший осадок и осуществляют его термическую обработку при температуре 500-750oС для получения каустического магнезита и 760-1200oС для получения огнеупорного оксида магния.

Способ осуществляют следующим образом.

Природный доломит - двойной карбонат магния и кальция состава CaCO3MgCO3. Обычно содержит примеси глины, силикатов, соединения железа, органических веществ. В зависимости от примесей доломит бывает почти белого (Ковровское месторождение Владимирской области) или темно-коричневого (Гремячевское месторождение Нижегородской области) цвета.

При реакции доломита с серной кислотой в водный раствор переходит только MgSО4, т.к. сульфат кальция - плохо растворимое вещество и остается в осадке в виде гипса.

Уравнение реакций, происходящих при воздействии серной кислоты на доломит, таковы: Реакцию необходимо проводить в разбавленной серной кислоте, т.к. происходит частичное связывание воды в двухводный гипс и раствор густеет.

При обработке природного доломита смесью серной и соляной кислот при их молярном соотношении 1:2 происходит реакция: В металлургической, химической и других отраслях промышленности образуется большое количество растворов серной и соляной кислот с ненормированной концентрацией, т.е. отходов, не находящих сбыта и загрязняющих окружающую среду. Например, ингибированная соляная кислота содержит 19-25 % HCl, извлеченная из отбросных газов органических производств - 20-27% HCl. Серная кислота, регенерированная из сернистого газа металлургических и других производств, содержит до 75% Н2SO4.

Малорастворимый осадок сульфата кальция (гипса) отделяют от раствора солей магния, например, отстаиванием, фильтрованием (на фильтр-центрифуге), отжиманием (на фильтр-прессе).

В раствор солей магния добавляют щелочной реагент, обеспечивающий рН 10,6-12, например гидроксиды Са, Na, К, аммиак или карбонат натрия (Nа2СО3) или гидрокарбонат натрия (NаНСО3) или поташ (К2СО3). При рН 10,6 начинается осаждение гидроксида Mg, при рН 12 заканчивается.

Выпавший осадок гидроксида Mg промывают водой, центрифугируют или отжимают на фильтр-прессе и упаривают до сухого порошка.

Прокаливают гидроксид Mg при 500-750oС для получения каустического магнезита (MgO), а прокаливанием при 760-1500oС получают металлургический огнеупорный порошок MgO.

Природный доломит обрабатывают смесью серной и соляной кислот в молярном соотношении (1:2), чтобы соединения кальция осадились и не перешли в конечный продукт.

Анализ доломита, гидроксида магния и оксида магния проводили химическим методом согласно ГОСТ 23260.4-78, ГОСТ 22688-77 и спектральным методом по ГОСТ 23260.2-78.

Пример 1.

Была приготовлена смесь кислот с концентрацией: серная кислота - 1,5 моль/литр (14,7%), соляная кислота - 3,0 моль/литр (10,9%).

Молярное соотношение серной и соляной кислот равно 1:2.

Для опыта взяли 200 мл раствора кислот, в котором содержалось 0,3 моль серной кислоты (29,4 г) и 0,6 моль соляной кислоты (21,9 г). Теоретическое количество доломита, требующегося для их нейтрализации, составляет 0,3 моль (61,3 г).

Доломит добавляли в реактор-смеситель постепенно до прекращения газовыделения (рН 7,0). Практическое количество доломита составило 64 г (избыток 2,7 г приходится на примеси). В ходе реакции было добавлено ~100 мл воды, т. к. раствор густеет. После фильтрования получен осадок сульфата кальция (гипса) массой 77 г, что составляет 0,44 моль (теоретический расчет - 0,3 моль). Превышение на 0,14 моль связано с наличием в осадке всех примесей, содержащихся в исходном доломите, а также воды. Цвет осадка светло-коричневый.

В результате опыта было получено 230 мл раствора хлорида магния плотностью 1080 кг/м3, что соответствует концентрации солей 10% (по ареометру).

Химический анализ показал, что данный раствор содержит 22,5 г хлорида магния (9%) и 2,5 г хлорида кальция (1%), что также соответствует суммарной концентрации солей 10 мас.%. Выход реакции по хлориду магния составляет 0,26 моль, т.е. 87,3% от теоретического.

В полученный раствор хлорида магния добавили избыток щелочного осадителя гидроксида Na с рН 10,6 до рН 12,0. Выпавший осадок гидроксида Mg промыли водой до рН 7,5, отфильтровали на вакуумном фильтре и высушили при 120oС. Масса сухого осадка Mg(OH)2 составила 9,8 г. После обжига при 750oС получили 6,8 г каустического магнезита, содержащего 96,1 % MgO, 1,5 % СаО, суммарное содержание SiO2, Аl2О3 и Fе2O3 составляло 2,2 %. В процессе осаждения Mg(OH)2 в щелочной среде происходит дополнительная очистка от соединений кальция, т.к. его гидроксид Са(ОН)2 хорошо растворимое вещество и удаляется при промывании осадка водой.

Примеры 2-6.

Проводили аналогично примеру 1. Данные сведены в таблицу. Предлагаемый способ получения оксида магния имеет следующие преимущества: позволяет исключить обжиг доломита и использовать отходы серной и соляной кислот, что упрощает, удешевляет и делает его экологичным; позволяет улучшить качество оксида магния за счет отделения соединений магния от соединений кальция; продукт, полученный по данному способу, был подвергнут исследованию на кафедре минералогии Российского химико-технологического университета им. Д. И. Менделеева. Дисперсионный и петрографический анализ состава оксида магния и высокое значение огнеупорности (1700oС) позволяют использовать его в производстве высококачественных огнеупорных материалов и изделий.

Формула изобретения

Способ получения оксида магния, включающий обработку доломита и отделение раствора солей магния от осадка, отличающийся тем, что обработку природного доломита осуществляют серной кислотой или смесью серной и соляной кислот в молярном соотношении 1:2, после отделения раствора солей магния от осадка осаждают гидроксид магния из раствора щелочным реагентом, обеспечивающим рН 10,6-12, отделяют выпавший осадок и осуществляют его термическую обработку при температуре 760-1200oС для получения огнеупорного оксида магния.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к твердым растворам магния и способам их получения
Изобретение относится к области выделения и очистки магния, в том числе изотопнообогащенного

Изобретение относится к технологии получения магнезии (оксида магния), используемой в производстве трансформаторной стали, резины, парфюмерии, фармацевтике, изготовлении пластмасс
Изобретение относится к химической промышленности, а именно к способам получения окиси магния из природного сырья, в частности из серпентизированного ультрабазита
Изобретение относится к химической промышленности, а именно к способам получения окиси магния из природного сырья, в частности из серпентинита

Изобретение относится к химической технологии неорганических веществ, в частности к технологии оксида магния для термостойких защитных покрытий трансформаторных сталей

Изобретение относится к агрегату частиц оксида магния, имеющему контролируемую структуру частиц

Изобретение относится к сушильной технике и может быть использовано при производстве фрезерного торфа, а также сушке волокнистых, зернистых и сыпучих материалов

Изобретение относится к агрегату частиц оксида магния, имеющему контролируемую структуру частиц

Изобретение относится к технологии неорганических веществ и может быть использовано для безотходной переработки кислотными методами магнийсодержащих минералов, в частности серпентинита

Изобретение относится к химической промышленности, а именно к способам получения оксида магния
Изобретение относится к неорганической химии и может быть использован при переработке нетрадиционных видов минерального сырья и комплексного использования отвалов талькового производства

Изобретение относится к области неорганической химии и может быть использовано при получении оксида магния из талькомагнезитовых руд и отходов обогащения талька из талькомагнезитовых руд
Изобретение относится к способу получения оксида магния. Способ получения оксида магния включает очистку раствора сульфата магния фракционной нейтрализацией, отделение осадка фильтрацией, осаждение из фильтрата гидроксида магния аммиаком и осаждение карбоната магния карбонатом аммония, отмывание осадков от сульфат-иона с последующей термообработкой и выделением оксида магния. Полученный на стадиях осаждения раствор сульфата аммония упаривают, гранулируют, расплавляют, при этом одновременно получают аммиак, который затем охлаждают, конденсируют и рециркулируют на стадию осаждения примесей металлов и гидроксида магния, и расплавленный гидросульфат аммония, который растворяют и используют для выщелачивания сульфата магния с примесями металлов из магнийсодержащего сырья, который затем направляют на дальнейшую переработку, получая замкнутый цикл производства. Изобретение позволяет получить оксид магния по замкнутому способу экономичным образом и уменьшить массу материалов в 1,54 - 2,31 раза. 5 з.п. ф-лы, 1 пр.

Изобретение может быть использовано в химической промышленности. Способ комплексной переработки природных рассолов хлоридного кальциево-магниевого типа включает получение кристаллогидрата хлорида кальция с примесью хлорида магния и обогащение рассола по литию с дальнейшей переработкой литиевого концентрата на соединения лития. Из рассола после операции обогащения по литию получают бром, оксид магния и хлор путем электролиза маточного рассола, обогащенного хлоридом натрия. Рассол после выделения лития и брома подвергают очистке от магния, упаривают до высаливания хлорида натрия и отделяют от кристаллов NaCl. Этот рассол или воду используют для растворения кристаллогидрата хлорида кальция с получением раствора, содержащего 400-450 кг/м3 хлорида кальция. Раствор хлорида кальция используют в обменной реакции с гипохлоритом натрия с получением гипохлорита кальция. Раствор хлорида кальция используют для получения бромида кальция путем перевода катионита КУ-2-8чс из H+- формы в Ca+- форму. Затем кальций десорбируют из катионита бромистоводородной кислотой, которую получают взаимодействием брома с водным раствором восстановителя, являющегося производным аммиака. Раствор хлорида кальция используют также для получения карбоната кальция. Изобретение позволяет получить из рассолов хлоридного кальциево-магниевого типа наряду с соединениями лития, бромом и оксидом магния гипохлорит кальция, бромид кальция и карбонат кальция при использовании реагентов, получаемых из того же рассола. 2 з.п. ф-лы, 3 ил., 10 пр.

Изобретение относится к химической промышленности и может быть использовано в качестве компонента гидравлического вяжущего для изготовления цементов и строительных материалов. Способ включает обжиг кускового магнезита в неподвижном слое в печи, отапливаемой газообразным топливом, и последующее измельчение обожженного продукта. Обжиг ведут в кольцевой печи с подвижным подом, температуру обжига магнезита поддерживают в пределах 650÷800°С при содержании примесей в магнезите более 8,0% и 650÷950°С при содержании примесей в магнезите менее 8,0%. Толщину слоя магнезита на подине печи поддерживают 45±15 мм, а в качестве газообразного топлива используют генераторный синтез-газ, получаемый газификацией угля. Обжигают кусковой магнезит крупностью не более 30 мм при содержании фракции минус 5 мм не более 15%. В кольцевой печи поддерживают разрежение не менее 500 Па, а дымовые газы из печи обжига используют для нагрева магнезита перед обжигом. Изобретение позволяет обеспечить непрерывный процесс обжига магнезита в печи, регулировать состав атмосферы в печи обжига за счет поддержания в ней оптимального разрежения, уменьшить объем образования пыли. 2 з.п. ф-лы, 1 ил., 5 табл., 3 пр.
Наверх