Катализатор полимеризации этилена на основе бис(иминных) комплексов с бромидом никеля

 

Изобретение относится к области химической промышленности, в частности к созданию более экономичных новых гомогенных катализаторов, позволяющих на основе одного -олефина получать широкий спектр разветвленных полиолефинов от высокомолекулярных (жестких) до эластомеров различной молекулярной массы. Описан катализатор полимеризации этилена, содержащий 1,2-бис(арилимино)аценафтильный комплекс с бромидом никеля и алкилалюмоксан. Технический эффект - улучшение активности катализатора при полимеризации в реальных условиях, мало меняющего свою активность при повышенных температурах полимеризации этилена и позволяющего получать разветвленный полиэтилен (от 10 до 60 СН3 групп/1000 С) с регулируемыми молекулярными массами от сверхвысоких молекулярных масс до эластомеров. 3 табл.

Изобретение относится к области химической промышленности, в частности к созданию более экономичных новых гомогенных катализаторов, позволяющих на основе одного -олефина получать широкий спектр разветвленных полиолефинов от высокомолекулярных (жестких) до эластомеров различной молекулярной массы.

Известны катализаторы полимеризации этилена на основе металлгалоидных лигандов общей формулы где М=Ni, Pd; X=галогенид, алкил; R=Me, i-Pr, Cl, перфторалкил; R1=i-Pr, Cl; R2=H, ОМе, с подробным рассмотрением их синтеза и характеристик, а также исследования полимеризации -олефинов и циклоолефинов на этих катализаторах в присутствии в качестве сокатализатора алкилалюмоксанов или, например, катионрегенерирующих соединений бора В(С6Н5)3; [Рh3С]+[В(С6F5)4]- [1 - US Patent 6002034, Int. Cl. С 07 F 15/02; 14.12.1999; 2 - Ittel S.D., Johnson L.K., Brookhart M. "Late-Metal Catalysts for Ethylene Homo- and Copolymerization, Chem. Rev. 2000. V.100, No.4. P. 1169-1203; 3 - Simon L.C., Svejda S.A., Onate E., Killian C.M., Johnson L.K., White P.S. and Brookhart M. Synthesis of Branched Polyethylene Using (-Diimine)-nickel(II) Catalysts: Influence of Temperature, Ethylene Pressure and Ligand Structure on Polymer Properties, Macromolecules. 2000. V.33. No.7. Р.2320-2334; 4 - US Patent 5942461, Int. Cl. B 01 J 31/00; US Cl. 5 02/154, 24.08.1999; 5 - WO Patent Application 00/59956, Int. Cl. C 08 F 4/60, 110/2, C 08 L 23/06, 12.10.2000; 6 - US Patent 5886224, JPC Cl. C 07 C 251/08, US Cl. 564/272, 23.03.1999; 7 - US Patent 6218493 B1, Int. Cl. C 08 F 110/06; US Cl. 526/351; 17.04.2001; 8 - US Patent 6034259, Int. Cl. C 07 F 15/00, C 07 F 7 19/00, US Cl. 556/137, 07.03.2000; 9 - US Patent 6140439, Int. Cl. C 08 F 132/04, US Cl. 526/308, 31.10.2000; 10 - US Patent 5866663, Int. Cl. C 08 F 4/80, US Cl. 526/170, 02.02.1999; 11 - PCT WO 00/06620, Int. Cl. С 08 F 10/00, С 07 F 5/00, 7/00, 9/00, С 07 С 257/14, 10.02.2000; 12 - ЕР 0884331А2, Int. Cl. C 08 F 4/70, С 08 F 10/02, 16.12.1998; 13 - PCT WO 98/40374, Int.Cl. C 07 D 319/02, С 07 С 247/14, С 08 F 10/00, 4/70, 17.09.1998]. Многочисленные патенты посвящены широкому кругу различных -дииминных и иминофосфорных лигандов для синтеза катализаторов на основе Ni и Pd, а также полимеризации и сополимеризации различных олефинов, в том числе с полярными мономерами, в инертной атмосфере или на воздухе и в присутствии Н2О. Статьи и обзоры (их авторы являются авторами большинства патентов) включают наиболее представительные данные по -дииминным металлгалоидным катализаторам, кинетическим особенностям протекания процессов полимеризации -олефинов в их присутствии, а также по результатам изучения молекулярных характеристик и структурных особенностей полученных образцов полимеров, в основном полиэтиленов.

Приведенные литературные данные систематизируют большое количество представителей нового класса катализаторов, позволяющих в отсутствие второго мономера получать разветвленные полимеры с различным молекулярными характеристиками со свойствами от жестких пластиков до эластомеров в зависимости от природы катализатора, температуры полимеризации и концентрации мономера (давления этилена).

К недостаткам всех рассмотренных в данных публикациях катализаторов можно отнести резкое снижение их активности при повышении температуры полимеризации (особенно выше 60oС) - именно в тех условиях, когда получаются высокоразветвленные полимеры со свойствами эластомерных материалов. Так, например, в обзоре [2] приведены данные для бис(иминного) катализатора общей формулы (DAB)NiBr6 (DAB - -диимин), где в качестве заместителей в арильном кольце выступают R=R1=i-Pr; при изменении температуры полимеризации от 25 до 85oС при постоянстве остальных параметров (концентрации катализатора, давлении этилена) активность меняется от 7700 кг/молькат.МПач до 900 кг/молькат.МПач (в "ТО" от 77104 до 9104) при этом разветвленность (количество СН6/1000 С) меняется от 30 до 90.

Наиболее близким по технической сущности является способ проведения полимеризации -олефинов и других олефиновых мономеров на бис-(иминных) комплексах бромида никеля [14 - WO Patent Application 09623010, Int.Cl. С 08 F 210/16, С 08 F 110/02, С 08 F 110/06, 01/08/1996]. Данные патента по наиболее активному катализатору на основе 1,2-бис(2,6-изопропилфенилимино)аценафтену бромида никеля и МАО подробно изучены в обзоре [3] при различных давлениях этилена (от 1 до 45 ати), температурах полимеризации (от 35 до 85oС). Приведены изменения активности катализаторов при различных условиях синтеза полиэтилена и изучены MM, MMP и разветвленность полученных образцов полиэтиленов. Так, при проведении полимеризации этилена при 1,5 МПа при температурах 35, 60, 85oС активность составляет 44800, 25760, 7840 кг/молькат.МПач, при этом разветвленность равна 24, 58, 83 СН3/1000 С соответственно.

В патентном прототипе описаны около 71 примера синтеза бис-(иминных) металлгалоидных катализаторов в большинстве своем на основе Pd. В примерах 28, 30, 33 рассмотрен синтез наиболее активных при полимеризации катализаторов типа [(2,6-iPrPh)2DABH2]NiBr2, [(2,6-iPrPh)2DABAn2]NiBr2, [(2,6-MePh)2DAB-Me2] NiBr2, где DAB - -диимин, An - ацетонафтен, Me - метил, iPr - изопропил.

Согласно примеру 77 при полимеризации этилена на [(2,6-iPrPh)2DABH2] NiBr2 в условиях проведения процесса, практически аналогичных используемым нами (Рэ=0,314 МПа, Тпол.=31oС, [кат.]=3,910-5 моль, время полимеризации 1 час), получены следующие результаты: выход полиэтилена 5,1 г; активность катализатора 421,8 кг/молькат.МПач (по примеру - 4700 превращений катализатора); Тпл.=127oС (Н=170 Дж/г); Мn=47400; Мw=134000; Мwn=2,83; количество СН3 групп/1000С=10,5.

Таким образом, гомогенные катализаторы, описанные и изученные в заявке [14] и работе [3], не отличаются высокой активностью, особенно при температурах выше 50oС.

Изобретение решает задачу оптимизации структуры гомогенных высокоактивных катализаторов на основе -дииминных лигандов и NiBr2, приводящих к улучшению их активности при полимеризации в реальных условиях, мало меняющих свою активность при повышенных температурах полимеризации этилена и позволяющих получать разветвленный полиэтилен (от 10 до 60 СН3 групп/1000 С) с регулируемыми ММ от сверхвысоких молекулярных масс до эластомеров.

Указанная задача достигается за счет новых комплексов на основе 1,2-бис(арилимино)аценафтильных производных NiBr2 с новыми R где R - циклоалкил с числом атомов углерода, равным или более 5;
R1 - метил, изо-пропил;
R2 - водород, метил, изо-пропил.

Полимеризацию этилена проводят при давлении 0,1-1,5 МПа и температуре 30-80oС.

В качестве углеводородных растворителей применяют, например, толуол, н-гексан, бензин и др.

В качестве сокатализатора используют алкилалюмоксан (ААО), например метилалюмоксан (МАО), триизобутилалюмоксан (ТИБАО).

Синтез 1,2-бис(ариламино)аценафтильных комплексов NiBr2 проводят при взаимодействии соответствующего 1,2-бис(арилимино)аценафтильного лиганда с аддуктом NiВr2-диглим в хлористом метилене при комнатной температуре в атмосфере аргона, используя модификацию процедуры [15 - Johnson L.K., Killian C. M., Brookhart M. New Pd(II) and Ni(II)-based catalysts for polymerization of ethylene and -olefins, J. Amer.Chem.Soc. 1995. V.117. No.23. P.6414-6415] . К раствору 1 ммоль лиганда в 50 мл хлористого метилена при перемешивании в атмосфере аргона добавляют 0,9 ммоль аддукта NiBr2-диглим. Образовавшийся раствор перемешивают 5 часов, растворитель отгоняют на ротационном испарителе. К остатку добавляют 20 мл серного эфира, осадок отфильтровывают, промывают серным эфиром (дважды по 10 мл) и высушивают в вакууме.

[1,2-Бис-(2-циклопентилфенилимино)аценафтен] никель(II) бромид {символ катализатора согласно табл.1-1II}. Светло-коричневый порошок. Выход 98%. Найдено, %: С 59.27; Н 4.86; Вr 23.30; N 3.87. С34Н32Вr2N2Ni. Вычислено, %: С 59.43; Н 4.69; Вr 23.26; N 4.08.

[1,2-Бис-(2-циклопентил-6-метилфенилимино)аценафтен]никель (II) бромид { IV} . Красно-коричневый порошок. Выход 95%. Найдено, %: С 60.26; Н 4.82; Вr 22.30; N 3.85. С36Н36Вr2N2Ni. Вычислено, %: С 60.46; Н 5.07; Вr 22.34; N 3.92.

[1,2-Бис-(2-циклопентил-4,6-диметилфенилимино)аценафтен] -никель(II) бромид { V} . Красно-коричневый порошок. Выход 90%. Найдено, %: С 61.57; Н 5.29; Вr 21.40; N 3.47. C38H40Br2N2Ni. Вычислено, %: С 61.41; Н 5.42; Вr 21.50; N 3.77.

[1,2-Бис-(2,6-дициклопентилфенилимино)аценафтен] никель(II) бромид {6}. Красно-коричневый порошок. Выход 90%. Найдено, %: С 64.32; Н 5.82; Вr 19.50; N 3.37. C44H48Br2N2Ni. Вычислено, %: С 64.18; Н 5.88; Вr 19.41; N 3.40.

Структуры лигандов подтверждены ИК- и ЯМР-(1Н и 13С) спектроскопией.

В таблице 1 приведены исследованные нами образцы лигандов.

С целью упрощения восприятия используемых в данном изобретении бис(иминных) аценафтильных комплексов FeCl2 они обозначены нами символами, приведенными в таблице 1.

Ниже приводятся примеры, иллюстрирующие данное изобретение.

Пример 1
Полимеризацию этилена проводят в стальном автоклаве с мешалкой емкостью 150 мл, в который загружают 46,5 мл толуола, 3,7510-3 моль МАО в 2,5 мл толуола и 2,510-6 моль (IV) в 1 мл толуола.

Полимеризацию проводят в течение 30 мин при температуре 50oС при давлении этилена 0,3 МПа. Процесс прерывают добавлением в реакционную смесь этилового спирта. Полученную суспензию полимера подвергают фильтрации и сушке в вакууме при 60oС. Выход полиэтилена 11,61 г; активность 30960 кг/молькат.МПач; показатель текучести расплава при нагрузке 5 кг (I5) - 1,1 г/10 мин; температура плавления полимера Тпл=85oС, теплота плавления Н= 56 Дж/г, СН3/1000 С=33,5, плотность =923,7 кг/м3.

Примеры 2-16
Опыты проводят по примеру 1, но в условиях, представленных в таблице 2. Полученные результаты также отражены в таблице 2.

Примеры 17-23 (контрольные опыты)
Опыты проводят по примеру 1, но в условиях, представленных в таблице 3. Полученные результаты также отражены в таблице 3.

Таким образом, как показано в примерах 1-16, бис(имино)-аценафтильные комплексы бромида никеля, имеющие в качестве заместителей R в орто-положении арильного кольца циклоалкильные группы с числом атомов углерода 5 или выше (в конкретных примерах - циклопентил, циклогексил), R1=Me, i-Pr и R2=Н, Me или i-Pr высокоактивны и термостабильны с сохранением активности при температурах 50-70oС (особенно если R2=Me), высокой разветвленности полиэтилена даже при невысоких концентрациях этилена (Рэ=0,3 МПа). Полученный полимер может быть высокомолекулярным и жестким при сравнительно низких температурах полимеризации (около 30oС) и эластичным при синтезе при температурах 50oС и выше с плотностью до 880 кг/м3.

Контрольные примеры 17-23, взятые из литературы [3] и проэкстраполированные применительно к условиям проведения наших примеров (1-16), показали значительно меньшую активность при 50-70oС, в то время как катализатор из прототипа [14] характеризуется не только малой активностью, но и низкой молекулярной массой разветвленного полиэтилена даже при проведении полимеризации при 31oС.

Опытами на синтезированном нами катализаторе III, где R1=R2=H, доказано, что независимо от природы R (циклической структуры, алкильного строения, фторсодержащей группы типа СF3, С6F5 и др.) образуются низкомолекулярные полимеры - олигомеры - при высоком или низком давлении этилена, при низкой или повышенной температуре процесса полимеризации (см. также [3, 14]).


Формула изобретения

Катализатор полимеризации этилена, содержащий бис-(имино)аценафтильный комплекс с бромидом никеля и алкилалюмоксан, отличающийся тем, что в качестве бис-(имино)аценафтильного комплекса с бромидом никеля катализатор содержит соединение общей формулы

где R - циклоалкил с числом атомов углерода, равным или более 5;
R1 - метил, изо-пропил;
R2 - водород, метил, изо-пропил.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к технологии получения низкомолекулярного цис-1,4-полибутадиена и может быть использовано в промышленности синтетического каучука, а получаемый полимер применяют для пластификации эластомеров в лакокрасочной промышленности, для изготовления защитных покрытий и других целей

Изобретение относится к получению цис-бутадиенового каучука, который может быть использован в производстве шин, резинотехнических изделий, ударопрочного полистирола и АБС-пластиков

Изобретение относится к технологии получения синдиотактического 1,2-полибутадиена с содержанием винильных групп более 85% и кристалличностью 20-50% и может быть использовано в промышленности СК, в резинотехнической, обувной, легкой, шинной промышленности
Изобретение относится к промышленности синтетического каучука, а именно к способам получения цис-1,4-полибутадиена полимеризацией бутадиена-1,3 в среде углеводородного растворителя под действием катализатора, содержащего соединение кобальта, алкилалюминийхлорид и воду, с применением низкотемпературной обработки компонентов

Изобретение относится к способам получения цис-1,4-полибутадиена и может найти применение в промышленности синтетического каучука

Изобретение относится к области получения полибутадиена с высоким содержанием цис-1,4-звеньев в цепи полимера и может быть использовано в промышленности синтетического каучука, в производстве шин и других резинотехнических изделий

Изобретение относится к технике полимеризации бутадиена - 1,3 и может быть использовано в промышленности синтетического каучука, а получаемый продукт - в шинной, резинотехнической отраслях, в производстве ударопрочного полистирола и других целях

Изобретение относится к промышленности синтетического каучука

Изобретение относится к металлоценовым соединениям формулы (I), в которой СрI и СрII представляют собой карбанионы с циклопентадиенилсодержащей структурой, D представляет собой донорный атом и А-акцепторный атом, причем D и A связаны обратимой координационной связью таким образом, что донорная группа получает положительный (частичный) заряд, а акцепторная группа - отрицательный (частичный) заряд, М означает переходный металл III, IV, V или VI подгрупп Периодической системы элементов (Менделеева), Х означает анионный эквивалент, n в зависимости от заряда М означает число ноль, один, два, три или четыре

Изобретение относится к новым соединениям формулы IA, где n=1; X1 и X2 являются каждый независимо хлором или бромом; А является О или S; R1 означает водород; R2 означает C1-С6 алкил, C1-C4 алкилиден или CH2OR5; R3 означает водород, хлор или бром; R4 означает С4-С6 алкил и R5 означает водород, где R3 отсутствует, если R2 означает C1-C4 алкилиден

Изобретение относится к способу полимеризации, который заключается в том, что катализатор, замедлитель полимеризации, этилен и возможно сомономер олефина находятся в соприкосновении в условиях полимеризации, при этом катализатор состоит из оксида хрома, оксида титана и неорганического тугоплавкого оксида, замедлитель полимеризации выбирают из группы, включающей спирты, альдегиды, кетоны, сложные эфиры, органические кислоты и их смеси

Изобретение относится к гетероморфным полимерным композициям и способу их получения, содержащим (а) основную цепь гомогенного линейного или по существу линейного этилена/-олефинового сополимера и б) боковую цепь, прикрепленную к основной цепи, причем боковая цепь содержит этиленовый гомополимер или этилен/-олефиновый сополимер, имеющий плотность, которая по меньшей мере на 0,004 г/см3 превышает плотность полимера основной цепи, и имеющий более высокую степень кристалличности по сравнению со степенью кристалличности полимера основной цепи

Изобретение относится к области химической промышленности, в частности созданию более экономичных новых гомогенных катализаторов, позволяющих получать широкий марочный ассортимент полиэтиленов
Наверх