Импульсно-периодический лазер

 

Изобретение относится к лазерной технике, а именно к импульсно-периодическим твердотельным лазерам. Импульсно-периодический лазер содержит осветитель, внутри которого расположены активный элемент и лампа накачки. Верхняя часть осветителя содержит лампу накачки, а нижняя часть осветителя содержит активный элемент, теплоотводящую пластину, прозрачную для излучения накачки, прижимную пластину. Активный элемент выполнен пластинчатым и упруго прижат нижней частью осветителя по всей длине к теплопроводящей пластине. Коэффициенты теплопроводности активного элемента и прозрачной пластины 1, коэффициенты теплопередачи 1 верхней части активного элемента, 2 нижней части активного элемента, контактирующего с прижимной пластиной, связаны следующими соотношениями: 12, 0,5<2/1<1. Технический результат изобретения - повышение эффективности охлаждения лазера. 2 ил.

Изобретение относится к квантовой электронике и может быть использовано в импульсно-периодических твердотельных лазерах с кондуктивным охлаждением, работающих как в режиме кратковременных циклов излучения (десятки секунд), так и в продолжительном режиме (несколько минут) со стабильной энергией излучения, повышенным КПД и высокой направленностью излучения при средних (100-300 Вт) мощностях накачки.

Известен твердотельный лазер (см. патент RU 2102824 от 02.08.96), осветитель которого, состоящий из отражателя, лампы накачки и активного элемента, упруго прижат к основанию корпуса лазера.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного устройства, относится то, что данное устройство, слабо подверженное влиянию вибрации, механических и термических деформаций корпуса, критично к перегреву и термическим искажениям активного элемента, возникающим из-за значительного градиента температуры между ближней к лампе накачки и соответственно более нагретой частью и противоположной, менее нагретой при работе с повышенными мощностями накачки.

Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков и выбранным за прототип является твердотельный лазер (Балашов И.Ф. и др. "Охлаждение активного тела ОКГ с помощью металлического теплопроводника". Оптико-механическая промышленность, 4, 1968, с. 5), в котором активный элемент нижней частью посажен на теплоотвод посредством теплопроводной прослойки. В результате этого обеспечивается отвод тепла от активного элемента, что позволяет использовать более высокие мощности накачки.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного устройства, относится нескомпенсированный симметричный градиент температуры в плоскости, проходящей через оси лампы накачки и активного элемента, приводящий к возникновению цилиндрической тепловой линзы, что приводит к снижению выходных параметров излучения.

Сущность изобретения заключается в повышении КПД, мощности излучения и направленности излучения твердотельного лазера с безжидкостной системой охлаждения как в режиме кратковременных циклов излучения (десятки секунд), так и в продолжительном режиме (несколько минут) в широком диапазоне мощностей накачек (от 100 до 300 Вт).

Указанный технический результат при осуществлении изобретения достигается тем, что верхняя часть осветителя содержит лампу накачки, а нижняя часть осветителя содержит активный элемент, теплоотводящую пластину, прозрачную для излучения накачки, прижимную пластину, при этом активный элемент выполнен пластинчатым и упруго прижат по всей длине нижней частью осветителя к теплопроводящей пластине, причем коэффициенты теплопроводности активного элемента и прозрачной пластины 1, коэффициенты теплопередачи 1 верхней части активного элемента и 2 нижней части активного элемента, контактирующего с прижимной подвижной частью осветителя, связаны следующими соотношениями: 12, 0,5<2/1<1.

Кривая 1 - для коэффициента теплопередачи 2, удовлетворяющего условию 0,5<2/1<1;2/1>>1 (коэффициент теплопередачи 1 от верхней части активного элемента, контактирующего с прозрачной пластиной, значительно меньше 2 коэффициента теплопередачи от нижней части активного элемента); Кривая 3 - для случая, когда 2/1<0,5 (прижимная пластина выполнена из молочного стекла).

Аргументы, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата, заключаются в следующем.

Активный элемент 1 пластинчатого типа наиболее нагретой стороной (фиг.1) упруго прижат к плоской прозрачной пластине 2 прижимной пластиной 3 с отражающим покрытием. Верхняя часть осветителя с лампой накачки 4 изолирована тонкими теплоизоляционными фторопластовыми прокладками 5 от нижней части осветителя, содержащей активный элемент 1, пластину 2 и прижимную пластину 3. Пружинный механизм 6 осуществляет упругий прижим активного элемента 1 к прозрачной теплоотводящей пластине 2, имеющей хороший тепловой контакт с массивным алюминиевым корпусом 7 осветителя.

Устройство работает следующим образом, В процессе работы лампы накачки активный элемент нагревается симметрично за счет притока тепла от баллона лампы накачки и поглощения излучения накачки, так как из-за различий в коэффициентах теплопроводности уравниваются температуры ближней к лампе накачки части активного элемента и противоположной. Одновременно с нагревом за счет контактирования ближней к лампе накачки грани активного элемента с прозрачной теплопроводной пластиной и противоположной грани с прижимной пластиной с меньшим коэффициентом теплопередачи тепло симметрично удаляется по данному пути на алюминиевый корпус осветителя и его ребрами рассеивается в наружную среду.

Постоянный упругий поджим активного элемента обеспечивает надежный теплоотвод как от верхней части активного элемента, так и нижней. Упругость прижима выбрана таким образом, чтобы для предельно допустимых мощностей накачек внутренние напряжения, возникшие в активном элементе, не вызвали его разрушения, а привели только к клиновой деформации активного элемента.

Так как верхняя часть активного элемента нагревается больше из-за близости к баллону лампы накачки по сравнению с противоположной, теплопроводность материала прозрачной пластины, с которой контактирует данная часть активного элемента, должна быть больше теплопроводности материала прижимной части и соответствовать соотношению 12. При этом коэффициент теплопередачи 1 от верхней части активного элемента, контактирующего с прозрачной пластиной, и коэффициент теплопередачи 2 от нижней части активного элемента, контактирующего с прижимной пластиной, должны соответствовать соотношению 0,5<2/1<1.

Сравнительные испытания лазеров, выполненных по прототипу и изобретению, показали, что при работе в циклическом режиме с частотой следования импульсов 20 Гц и энергией накачки 4-5 Дж лазер, выполненный по изобретению, по сравнению с прототипом, обеспечивал стабильную работу в течение 1-1,5 мин в плоскопараллельном резонаторе длиной 29 см, в то время как у прототипа для компенсации симметричной термооптической составляющей в активном элементе применялся устойчивый резонатор, что в конечном счете приводило к повышению расходимости излучения.

В конкретном варианте твердотельного лазера использовался активный элемент из КГВ: Nd3+ толщиной и шириной 3 мм, длиной 50 мм, коэффициентом теплопроводности = 2,8 Втм-1 град-1. Плоскость поляризации излучения активного элемента проходила через плоскость, содержащую активный элемент и лампу накачки типа ИНПЗ-35. В качестве прозрачного теплоотвода от ближней к лампе части активного элемента использовалась лейкосапфировая пластина толщиной 1 мм, шириной 10 мм и длиной 70 мм с коэффициентом теплопроводности = 35 Втм-1 град-1. В качестве теплоотвода для нижней части активного элемента использовалась алюминиевая пластина толщиной 5 мм, длиной 50 мм и высотой 15 мм. При использовании зеркального осветителя в виде отражающего покрытия на прижимной пластине использовалась посеребренная полоска, изолированная от прижимной пластины тонким (~0,1-0,2 мм) слоем герметика ВГО-1 для выполнения соотношения 0,5<2/1<1. Для осветителя с диффузно-отражающим покрытием на прижимную пластину со стороны контакта с активным элементом наносилось диффузно-отражающее покрытие из окиси цинка. Размеры пластины, количество слоев и тип покрытия выбирались с расчетом уравнения скорости теплоотвода от верхней и нижней части активного элемента.

Формула изобретения

Импульсно-периодический лазер, содержащий осветитель, внутри которого расположены активный элемент и лампа накачки, отличающийся тем, что верхняя часть осветителя содержит лампу накачки, а нижняя часть осветителя содержит активный элемент, теплоотводящую пластину, прозрачную для излучения накачки, прижимную пластину, при этом активный элемент выполнен пластинчатым и упруго прижат по всей длине нижней частью осветителя к теплопроводящей пластине, причем коэффициенты теплопроводности активного элемента и прозрачной пластины 1, коэффициенты теплопередачи 1 верхней части активного элемента и 2 нижней части активного элемента, контактирующего с прижимной пластиной осветителя, связаны следующими соотношениями 12, 0,5<2/1<1.о

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к твердотельным оптическим квантовым генераторам, в частности к системам их охлаждения, и может быть использовано при изготовлении лазерной техники

Изобретение относится к конструкции оптической накачки для оптического квантового генератора, которая содержит активную среду в виде цилиндрического стержня (1), имеющего круглое сечение, причем концы стержня введены в два кольца (11), выполненные из теплопроводного материала, по меньшей мере, три пакета (21, 22) небольших стержней диодов накачки, расположенных звездой вокруг стержня, опору (5) с регулировкой температуры посредством модуля (8) на основе эффекта Пельтье, причем кольца (11) находятся в контакте с опорой (5). При этом пакет диодов, так называемый нижний пакет (21), размещен между стержнем (1) и опорой (5) и содержит для каждого другого пакета (22) блок (7) теплопроводности, образующий опору для упомянутого пакета (22), причем блоки (7) установлены на охлажденной опоре (5) и не находятся в контакте ни между собой, ни с кольцами (11). Технический результат заключается в обеспечении возможности повышения эффективности охлаждения при уменьшении габаритов устройства. 5 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам накачки и системам их охлаждения. Оптическая усилительная головка с диодной накачкой состоит из размещенных в корпусе активного элемента в виде стержня, матриц лазерных диодов, расположенных на держателях вдоль активного элемента, и системы охлаждения, содержащей стеклянную трубку, охватывающую активный элемент с образованием радиального канала δ. На обоих торцах стеклянной трубки установлены демпфирующие элементы. В корпусе, держателях и матрицах лазерных диодов расположены охлаждающие каналы с входным и выходным патрубками, образующие двухконтурную систему охлаждения. Технический результат заключается в повышении выходной энергии лазерного излучения и в достижении стабильности выходных энергетических параметров при частоте повторения импульсов до 100 Гц. 1 з.п. ф-лы, 7 ил.
Изобретение относится к лазерной технике, а конкретнее к жидкостным охлаждающим средам (теплоносителям) (ЖТС) твердотельных лазеров (например, неодимовых или гольмиевых), являющимся одновременно светофильтром для ультрафиолетового (УФ) излучения лампы накачки лазера. Оно может применяться везде, где разрабатываются или применяются твердотельные лазеры, имеющие жидкостную систему охлаждения с фильтрацией УФ-излучения лампы накачки. Сущность изобретения заключается в том, что ЖТС содержит 2-окси-4-(С7-С9-алкил)оксибензофенон, бутиловый спирт и октан при следующем содержании компонентов, мас.%: 2-окси-4-(С7-С9)алкоксибензофенон 0,3-0,6 бутиловый спирт 35-45, октан - остальное. Технический результат заключается в обеспечении возможности увеличения ресурса работы лазера.

Изобретение относится к лазерной технике. Оптическая усилительная головка с контротражателем диодной накачки состоит из размещенных в корпусе активного элемента в виде стержня, элементов диодной накачки, расположенных равномерно вокруг и вдоль активного элемента на держателях, и системы охлаждения, содержащей трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, каналы в корпусе, каждом держателе и элементах накачки и входной и выходной коллекторы. Каждый держатель содержит отражающую поверхность, обращенную к активному элементу, торцы активного элемента закреплены в прижимах, установленных в корпусе, система охлаждения выполнена в виде единого контура. В качестве элементов диодной накачки используются линейки лазерных диодов, каждая из которых снабжена цилиндрической линзой, а отражающие поверхности держателей расположены вдоль поверхности активного элемента и охватывают его диаметрально. Технический результат заключается в обеспечении возможности снижения гидравлического сопротивления системы охлаждения. 6 ил.

Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы. Квантрон снабжен световодами, расположенными параллельно оси активного элемента, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках. В качестве элементов термостабилизации используются нагреватели и элементы охлаждения. Технический результат заключается в обеспечении возможности упрощения системы охлаждения активного элемента. 2 ил.

Изобретение относится к лазерной технике. Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки содержит активный элемент, установленный в кольцах, термоинтерфейс и блок диодной накачки, состоящий из теплораспределителя с выступами, установленного жестко на посадочной поверхности, термоэлектрического модуля, расположенного между теплораспределителем и посадочной поверхностью, и линеек лазерных диодов, размещенных на выступах теплораспределителя равномерно относительно активного элемента и обращенных к нему излучающей частью. Излучатель снабжен жестко закрепленным на посадочной поверхности резонатором, в корпусе несущей части которого расположен активный элемент. Блок диодной накачки снабжен нагревателем, расположенным в теплораспределителе, и ограничительной рамкой, в которой установлен термоэлектрический модуль с воздушным зазором по периметру. Резонатор и блок диодной накачки не имеют контактов. Технический результат заключается в обеспечении возможности увеличения КПД лазера. 6 ил.

Изобретение относится к лазерной технике. Универсальный излучатель твердотельного лазера с безжидкостным охлаждением содержит резонатор, установленный жестко на основание, устройство накачки и теплообменный блок, содержащий термоэлектрические модули и теплообменники. Устройство накачки выполнено в виде квантрона, жестко закрепленного на основании, теплообменный блок снабжен нагревательным элементом, контурной тепловой трубой с пластиной конденсатора, термоинтерфейсом и термодатчиками, установленными в теплообменниках пластине конденсатора. Конструкция резонатора выполнена деформационно-устойчивой, при этом оптическая схема выполнена на базе неустойчивого резонатора. Технический результат заключается в обеспечении возможности повышения устойчивости конструкции к внешним воздействующим факторам. 4 ил.

Устройство охлаждения активного элемента твердотельного лазера содержит активный элемент, расположенный в оболочке из оптически прозрачного теплопроводного материала, и металлические ламели, контактирующие с внешней стороной оболочки. Между активным элементом и оболочкой размещена оптически прозрачная прослойка, теплопроводность которой меньше теплопроводности оболочки и активного элемента, а в местах контакта оболочки и ламелей размещен термоинтерфейс. Технический результат - повышение качества кондуктивного охлаждения активного элемента с высокой теплопроводностью при боковой накачке. 1 ил.

Изобретение относится к лазерной технике. Оптическая усилительная головка с диодной накачкой содержит размещенные в корпусе: активный элемент в виде стержня, матрицы лазерных диодов, расположенные равномерно на держателях, и систему охлаждения, содержащую трубку, охватывающую активный элемент с образованием кольцевого канала δ, каналы, расположенные в корпусе и каждом держателе, входной, выходной патрубки и выполненные в корпусе входной и выходной коллекторы, трубка выполнена из материала, прозрачного для излучения накачки. Система охлаждения выполнена в виде единого контура, а корпус оптической усилительной головки выполнен в виде цилиндра. Технический результат заключается в обеспечении возможности уменьшения гидравлического сопротивления системы охлаждения. 2 н. и 3 з.п. ф-лы, 8 ил.
Наверх