Способ получения высококремнеземных цеолитов

 

Использование: нефтехимия. Сущность: проводят модификацию высококремнеземного цеолита, полученного с использованием бикарбоната аммония, с введением в реакционную смесь на стадии гидротермального синтеза растворимых солей железа (III). Содержание Fe2O3 в полученном цеолите составляет 0,2-3,5 мас.% Технический результат: повышение времени действия полученного высококремнеземного цеолита. 1 табл.

Изобретение относится к нефтеперерабатывающей и химической промышленности, в частности к способу повышения времени стабильной работы катализаторов на основе высококремнеземных цеолитов (ВКЦ), которые могут найти широкое применение в качестве адсорбентов и катализаторов для процессов крекинга, гидрокрекинга, изомеризации, алкилирования, конверсии метанола в углеводороды и др.

Известен способ получения катализатора со структурой типа ZSM-12, модифицированного на стадии гидротермального синтеза металлами III и/или VIII группы, для конверсии метанола в углеводороды (Патент РФ 1192225). С целью повышения селективности катализатора в отношении образования дурола в его состав из соединений VIII группы вводят соединения железа. Недостатком этого способа является использование в качестве органического основания смеси триэтиламина и оксида этилена.

Наиболее близким к предлагаемому способу является способ получения высококремнеземного цеолита со структурой типа ZSM-5 (А.c. 1255569), где в качестве структурообразующей добавки используют бикарбонат аммония. Недостатком этого способа является быстрая дезактивация цеолита (в течение 15 часов).

Задачей предлагаемого изобретения является повышение времени стабильного действия высококремнеземного цеолита, полученного с использованием бикарбоната аммония, посредством модификации его железом на стадии гидротермального синтеза путем частичной или полной замены ионов А13+ на ионы Fe3+ в кристаллической структуре цеолита.

Технический результат достигается тем, что в качестве структурообразующей добавки используется бикарбонат аммония, и гидротермальный синтез ВКЦ ведут в присутствии растворимой соли железа. В качестве растворимой соли железа могут быть нитрат, сульфат или хлорид железа. Состав реакционной смеси следующий (в молях): (5-30) Na2O-(3-80)К-(Аl2O3+Fе2O3)-(30-100)SiO2-(600-3500)H2O, где R-бикарбонат аммония. В результате синтеза получают железосодержащие цеолиты с содержанием Fе2O3 от 0,2 до 3,5 мас.%, срок стабильного действия которых в реакции конверсии метанола в 3-17 раз превышает продолжительность стабильной работы цеолита, не содержащего железа.

Пример 1. К 145 г 30% золя SiO2 добавляют при перемешивании 0,9 г затравки; 8,28 г NН4HСО3 в 145 мл Н2O; 8,58 г Аl(NO3)32O в 70 мл Н2O; 0,45 г Fе(NО3)32О в 70 мл Н2O; 17,2 г NaOH в 140 мл Н2O. Полученная смесь имеет состав (в молях): 17,5Na2O; 8,3R; 0,95 Аl2О3; 0,046 Fе2О3; 60 SiO2; 2417 H2O. Данную смесь загружают в автоклав и выдерживают при температуре 165oС в течение 2 суток, затем охлаждают до комнатной температуры. Приготовленный цеолит промывают водой, сушат при 110oС и прокаливают при 450oС в течение 4 часов. ИК-спектр полученного образца идентичен спектрам цеолитов типа ZSM. По данным рентгеноструктурного анализа межплоскостные расстояния являются характерными для высококремнеземных цеолитов типа ZSM-5. Синтезированный цеолит переводили в Н-форму обработкой 25%-ным раствором NH4Cl при температуре 95oС в течение 2 ч (10 г 25 %-ного раствора NH4Cl на 1 г цеолита), затем высушивали при 100oС и прокаливали при 540oС в течение 6 ч.

Стабильность цеолитного катализатора определяют с помощью экспресс метода по длительности его работы в течение одного цикла в модельной реакции превращения метанола в углеводороды на установке проточного типа при атмосферном давлении, температуре 390oС, объемной скорости подачи метанола 1 ч-1 и степени превращения метанола не менее 99%.

Экспресс метод определения срока службы катализатора основан на том, что в процессе превращения метанола в углеводороды за счет экзотермичности реакции происходит формирование температурного фронта, скорость перемещения которого по слою катализатора совпадает со скоростью перемещения зоны дезактивации слоя катализатора коксом. Скорость дезактивации катализатора определяют по скорости перемещения теплового фронта по слою катализатора. Время стабильного действия цеолитного катализатора составляет 41 час.

Пример 2. Так же как в примере 1, но в реакционную смесь добавляют 5,25 г Аl(NО3)32O в 70 мл Н2О и 4,04 г Fе(NO3)39 Н2О в 70 мл Н2O. Полученная смесь имеет состав (в молях): 17,5 Na2O; 8,3 R; 0,58 Аl2О3; 0,42 Fе2О3; 60 SiO2; 2417 Н2О. Время стабильного действия цеолита составляет 193 часа.

Пример 3. Так же как в примере 1, но в реакционную смесь добавляют 2,25 г Аl(NО3)32O в 70 мл Н2O и 7,27 г Fе(NО3)39H2O в 70 мл Н2О. Полученная смесь имеет состав (в молях): 17,5 Na2O; 8,3 R; 0,25 Аl2О3; 0,75 Fе2О3; 60 SiO2; 2417 Н2О. Время стабильного действия цеолита составляет 256 часов.

Пример 4. Так же как в примере 3, но в реакционную смесь вместо Fе(NО3)32O добавляют 4,86 г FеСl36 Н2О в 70 мл Н2О. Полученная смесь имеет состав (в молях): 17,5 Na2O; 8,3 R; 0,25 Аl2О3; 0,75 Fе2О3; 60 SiO2; 2417 Н2О. Время стабильного действия цеолита составляет 216 ч.

Пример 5. К 75 г жидкого стекла ( 29% SiO2; 9% Na2O ) добавляют при перемешивании 0,5 г затравки, 4,14 г NH4HCО3 в 60 мл Н2О, 5,25 г Аl(NО3)32О в 30 мл Н2O; 4,04 г Fе(NO3)39H2O в 30 мл H2O. Полученная смесь имеет состав (в молях): 9,06 Na2O; 4,34 R; 0,58 Аl2О3; 0,42 Fе2О3; 30 SiO2; 775 Н2O. Время стабильного действия цеолита составляет 160 ч.

Пример 6. Так же как в примере 5, но в реакционную смесь добавляют 1,88 г Al(NO3)39H2O в 30 мл Н2O и 1,21 г Fе(NO3)32O в 30 мл Н2O. Полученная смесь имеет состав (в молях): 27,5 Na2O; 12,5 R; 0,62 Аl2О3; 0,38 Fе2O3; 90 SiO2; 2325 Н2O. Время стабильного действия цеолита составляет 140 ч.

В таблице представлены сравнительные характеристики образцов железосодержащих цеолитов, полученных с бикарбонатом аммония, и цеолита, полученного по прототипу.

Как видно из данных таблицы, предлагаемый способ повышения времени стабильной работы цеолита позволяет получить катализатор, отличающийся от прототипа более высоким сроком стабильной работы в процессе конверсии метанола в углеводороды.

Формула изобретения

Способ получения высококремнеземных цеолитов, включающий модификацию высококремнеземного цеолита, полученного с использованием бикарбоната аммония, отличающийся тем, что на стадии гидротермального синтеза в реакционную смесь вводят растворимые соли железа (III), при этом содержание Fе2O3 в полученном цеолите составляет 0,2-3,5 мас.%.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области нефтехимии и нефтепереработки, в частности к способам синтеза цеолитов - кристаллических алюмосиликатов, компонентов катализаторов и адсорбентов для нефтехимии и нефтепереработки

Изобретение относится к синтетическому слоистому материалу МСМ-56, его получению и использованию в качестве сорбента или компонента катализатора конверсии органических соединений
Изобретение относится к способам получения цеолитов, применяемых в химической промышленности, в частности как компонентов моющих средств

Изобретение относится к процессам кристаллизации и нейтрализации цеолитов, применяемых в химической промышленности, в частности, в качестве добавки к синтетическим моющим средствам

Изобретение относится к производству цеолита NaA в частности к нейтрализации суспензии цеолита NaA, используемого в химической промышленности при производстве моющих средств

Изобретение относится к области производства катализаторов для избирательного восстановления окислов азота

Изобретение относится к способу получения катализатора и его использования в конверсии синтез-газа в соответствии с процессом Фишера-Тропша

Изобретение относится к способам приготовления катализаторов для дегидрирования различных углеводородов, в частности для дегидрирования С2-С5 парафинов до соответствующих олефинов

Изобретение относится к производству палладиевых катализаторов и может быть использовано для таких каталитических процессов, как гидрирование органических соединений и очистка олефинов и их фракций от ацетиленовых соединений, тонкой очистки водорода от кислорода, а также для процессов глубокого окисления углеводородов и оксида углерода

Изобретение относится к катализаторам и способу удаления оксидов азота как из сухих, так и влажных и серосодержащих отходящих газов углеводородами С2-С16 в окислительных условиях

Изобретение относится к катализаторам и способам получения оксидных катализаторов, применяемых в процессах глубокого окисления органических соединений и оксида углерода в газовых выбросах промышленных производств

Изобретение относится к области нефтепереработки и нефтехимии, в частности к области получения экологически чистых неэтилированных бензинов, в том числе путем каталитического гидрирования ароматических углеводородов

Изобретение относится к катализатору и способу, пригодному для каталитической гидрогенизации ненасыщенного углеводородного соединения

Изобретение относится к каталитической химии, в частности к приготовлению катализатора гидродепарафинизации масляных фракций
Наверх