Симметричный способ измерения абсолютного значения ускорения свободного падения

 

Использование в баллистических лазерных гравиметрах для измерения абсолютных значений ускорения свободного падения. Сущность: при симметричном способе измерения абсолютного значения ускорения свободного падения баллистическим гравиметром с лазерным интерферометром перемещения путем измерения пути на двух фиксированных интервалах времени на восходящей и ниспадающей ветвях траектории вертикально подброшенной вверх пробной массы с уголковым оптическим отражателем рабочий участок траектории разбивается на множество равновозрастающих интервалов времени с общим началом подсчета квантов интерференционного сигнала пути на восходящей ветви траектории и с общим концом на ниспадающей ветви. Конечный результат измерения определяется как среднее взвешенное значение ускорения свободного падения всех интервалов в каждом броске пробной массы с учетом весовых коэффициентов. Технический результат: повышение точности. 1 ил., 1 табл.

Изобретение относится к области гравиметрии и может быть использовано в баллистических лазерных гравиметрах для измерения абсолютных значений ускорения свободного падения (g).

Существует симметричный способ измерения ускорения свободного падения баллистическими лазерными гравиметрами путем измерения пути и времени вертикально подброшенной вверх пробной массы с уголковым оптическим отражателем на восходящем и ниспадающем участках траектории движения при помощи лазерных интерферометров перемещений [1, 2].

Наиболее близким по сущности к предлагаемому изобретению является симметричный способ измерения абсолютного значения g, реализованный в баллистическом лазерном гравиметре с двухходовым интерферометром перемещений в соответствии с рабочей формулой [3]: где h= 0,315 - квант интерференционного сигнала пути для двухходового интерферометра с Не-Ne лазером; Т - задаваемое время на восходящем и ниспадающем участках траектории полета пробной массы с уголковым оптическим отражателем; Nh1, Nh2 - количество квантов интерференционного сигнала пути на восходящей и ниспадающей ветвях траектории соответственно; - пауза в подсчете квантов пути при вершине траектории.

Точность измерения абсолютного значения g зависит от погрешности счета квантов пути. Для равновероятного закона распределения выражение средней квадратической погрешности измерения абсолютного значения g имеет вид: Например, при Т=0,12 с, =0,08 с имеем h=0,53 мГал.

Недостатком данного симметричного способа измерения абсолютного значения g является низкая точность, обусловленная погрешностью измерения пути квантами, сформированными из интерференционного сигнала.

Изобретение направлено на повышение точности симметричного способа измерения абсолютного значения g баллистическим гравиметром с лазерным интерферометром перемещений.

Это достигается тем, что при симметричном способе измерения абсолютного значения g баллистическим лазерным гравиметром путем измерения пути на двух фиксированных интервалах времени на восходящей и ниспадающей ветвях траектории вертикально подброшенной вверх пробной массы с уголковым оптическим отражателем при помощи лазерного интерферометра перемещений рабочий участок траектории разбивается на множество равновозрастающих интервалов времени с общим началом подсчета квантов интерференционного сигнала пути на восходящей ветви траектории и с общим концом на ниспадающей ветви, причем конечный результат измерения g определяется как среднее взвешенное значение ускорения свободного падения всех интервалов в каждом броске пробной массы с учетом весовых коэффициентов.

На чертеже приведена траектория полета пробной массы при симметричном способе измерения абсолютного значения ускорения свободного падения.

Принцип способа заключается в следующем.

Траектория полета пробной массы разбита на множество фиксированных, симметрично расположенных относительно вершины траектории интервалов времени. Для каждого i-го интервала определение gi производится в соответствии с выражением: Вследствие того, что погрешность квантования зависит от соотношения iT/n и , то величины gi относятся к неравноточным значениям отчета. Следовательно, конечный результат определяется как среднее взвешенное через весовые коэффициенты qi [4]

где


среднее квадратическое отдельно взятого значения gi.

Результирующая погрешность измерения абсолютного значения ускорения свободного падения симметричным способом в данном случае определится средним квадратическим взвешенным

Процесс изменения результирующей погрешности от количества интервалов i можно проследить, используя данные расчета, приведенные в таблице.

Из расчетных данных следует, что деление рабочего участка траектории на десять интервалов снижает погрешность в два раза, а деление на пятьдесят интервалов - примерно в пять раз. Из таблицы следует, что увеличение количества интервалов более пятидесяти практически не снижает результирующую погрешность определения .

Используя многоинтервальный метод в сочетании с электронным удвоением при рабочем участке траектории около 11 см, можно снизить результирующую погрешность от квантования интерференционного сигнала импульсами пути до 50 мкГал.

Источники информации
1. А.П.Юзефович, Л.В.Огородова. Гравиметрия. - М.: Недра, 1980.

2. В. А.Романюк. Измерение абсолютного значения ускорения силы тяжести. Geod. Geoph. Veroff. R., III, H30, Berlin, 1974.

3. Агрегат 15В166. Техническое описание. ПБ 1.530.001ТО, МО СССР, 1987.

4. И.Ф.Шишкин. Метрология, стандартизация и управление качеством. - М.: Издательство стандартов, 1990.


Формула изобретения

Симметричный способ измерения абсолютного значения ускорения свободного падения, заключающийся в измерении пути баллистическим лазерным гравиметром на двух фиксированных интервалах времени на восходящей и ниспадающей ветвях траектории вертикально подброшенной вверх пробной массы с уголковым оптическим отражателем при помощи лазерного интерферометра перемещений, отличающийся тем, что рабочий участок траектории разбивается на множество равновозрастающих интервалов времени с общим началом подсчета квантов интерференционного сигнала пути на восходящей ветви траектории, и с общим концом на ниспадающей ветви, причем конечный результат измерения ускорения свободного падения определяется как среднее взвешенное значение ускорения свободного падения всех интервалов в каждом броске пробной массы с учетом весовых коэффициентов.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к измерительной технике и предназначено для измерения вертикального градиента ускорения силы тяжести WZZ

Изобретение относится к измерительной технике и предназначено для измерения вертикального градиента ускорения силы тяжести Wzz и двух составляющих градиента кривизны уровенной поверхности потенциала силы тяжести Wxx, Wyy

Изобретение относится к измерительной технике, предназначено для измерения вертикального градиента ускорения силы тяжести Wzz и ускорения силы тяжести g

Изобретение относится к области гравиметрии, а именно к средствам абсолютных измерений ускорения свободного падения (ускорения силы тяжести)

Изобретение относится к гравиметрии и может быть использовано для измерений абсолютных значений ускорения свободного падения

Изобретение относится к геофизическому приборостроению, а именно к области гравиметрии, и предназначено для выставления вертикали лазерного луча в баллистическом гравиметре при проведении высокоточных абсолютных измерений силы тяжести или ее приращений. Сущность способа заключается в отслеживании смещения лазерного луча отраженного от свободно падающего тела в процессе его движения с помощью видеокамеры, вычисления по данным видеозаписи угла отклонения лазерного луча от вертикали и коррекции направления луча в требуемую сторону. Технический результат заключается в обеспечении возможностей повышения точности выставления вертикали лазерного луча в баллистическом гравиметре, уменьшения погрешности измерения абсолютного значения ускорения силы тяжести, уменьшения чувствительности к вибросейсмическим помехам. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области гравиметрии и касается способа выставки в вертикаль лазерного луча баллистического гравиметра. Способ заключается в том, что проводят серию бросков пробного тела при различных наклонах платформы гравиметра, в каждом броске определяют ускорение свободного падения, находят минимальное значение ускорения в серии бросков и соответствующий ему наклон платформы, при этом наклоне фиксируют платформу. Для реализации способа предлагается лазерный баллистический гравиметр, содержащий платформу, акселерометры и двигатели. В гравиметр введена система управления выставкой в вертикаль лазерного луча, содержащая блок соответствия, имеющий структуру матрицы, построчные ячейки которой представляют собой величины измеренных ускорений свободного падения, углы наклона платформы, сигналы управления и выключатели, а столбцы представляют собой ячейки сопоставления. Система управления также содержит общую шину, блок поиска, блок стратегий и сумматор. Технический результат заключается в повышении точности абсолютного измерения ускорения свободного падения, упрощении обслуживания гравиметра и сокращении времени полевых измерений. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области гравиметрии и может быть использовано для измерения в морских условиях абсолютных значений ускорения свободного падения. Сущность: на корабле устанавливают абсолютный лазерный и относительный гравиметры. Измеряют множество интервалов пути и времени лазерным интерферометром абсолютного гравиметра. Выделяют переменную составляющую сигнала относительного гравиметра. Вырабатывают команду на бросок пробного тела. Причем бросок пробного тела осуществляют при минимальной скорости вертикального перемещения основания, которую вычисляют по интегралу от составляющей сигнала относительного гравиметра, вызванной качкой корабля. Рабочий участок траектории полета пробного тела разбивают на кванты интерференционного сигнала. По разности интервалов времени прохождения соседних квантов вычисляют мгновенные значения суммы ускорений свободного падения и движения основания. Указанные значения осредняют и получают измеренную в броске сумму ускорений. На интервале времени полета пробного тела осредняют переменную составляющую сигнала относительного гравиметра. Среднее значение переменной составляющей вычитают из измеренной в броске суммы ускорений и сохраняют разность как измеренное в броске ускорение свободного падения. Проводят несколько бросков. Осредняют ускорения свободного падения по множеству бросков. По полученному истинному значению ускорения свободного падения корректируют показания относительного гравиметра. Для осуществления способа на основании (4) устанавливают абсолютный гравиметр (1), содержащий катапульту (2) и счетчик интерференционных импульсов (3). Рядом устанавливают относительный гравиметр (5). Оба гравиметра (1, 5) соединены с вычислителем (6). В вычислитель (6) введены блок (7) мгновенных суммарных ускорений, блок (8) среднего суммарного ускорения, фильтр (9), интегратор (10) выработки скорости основания, блок (11) среднего ускорения основания, две схемы сравнения (12, 13), накопитель (14), блок (15) истинного значения ускорения свободного падения и командный блок (16). Технический результат: повышение точности измерения ускорения свободного падения в условиях вертикальных перемещений основания, соизмеримых с длиной траектории полета пробного тела. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области гравиметрических измерений и касается способа определения абсолютного значения ускорения свободного падения. Измерения проводят баллистическим лазерным гравиметром с помощью нескольких непараллельных лазерных лучей, которые образуют плоскости в виде треугольников. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к гравиметрии и может быть использовано для измерений абсолютных значений ускорения свободного падения. Баллистический гравиметр содержит вакуумную камеру, устройство сбрасывания пробного тела, источник излучения, фотоприёмник, устройство синхронизации и обработки сигнала. На пробном теле закреплён оптический элемент, который выполнен в виде дифракционной решётки. Штрихи указанной решётки расположены горизонтально. На пути лучей света, дифрагирующих на решётке при работе устройства, установлен оптический мультиплексор, выход которого подключён к фотоприёмнику. Технический результат заключается в увеличения временной разрешающей способности, уменьшения габаритов устройства и упрощения алгоритма обработки сигналов. 1 з.п. ф-лы, 3 ил.

Голограммный баллистический гравиметр, содержащий вакуумную камеру, устройство сбрасывания пробного тела, первую голограмму, закрепленную на пробном теле, источник монохроматического излучения, систему коллимации, фотоприемник, электронное устройство синхронизации и обработки сигналов. На пути луча света, прошедшего первую голограмму, установлена вторая голограмма, геометрически тождественная первой. Фотоприемное устройство установлено в области наложения пучков света, дифрагирующих на обеих голограммах. Технический результат заключается в уменьшении габаритов гравиметра. 2 ил.
Наверх