Индикатор токсических газов

 

Изобретение относится к измерительной и индикаторной технике и может быть использовано как в измерительных устройствах, так и без них, в качестве визуального индикатора для контроля окружающей среды, измерения концентраций и нахождения течей вредных и дорогостоящих газов, контроля герметичности изделий, содержащих вредные химические вещества, и других устройств, применяемых в метрологии, в сельском хозяйстве, различных отраслях промышленности, в научных исследованиях. Индикатор токсических газов представляет собой пористый материал, в который внесены мелкодисперсные фрагменты пленки, состоящей из смеси двух проводящих полимеров: политиофена и полисиланоанилина в массовом соотношении 4-3:1,5-1, которые соответственно синтезируются в режиме потенциостатического циклирования при потенциалах от -2.0 до -3.4 в режиме катода и от +5.7 до +7.2 в режиме анода относительно противоэлектрода, который представляет собой графитовый стержень с обвитой вокруг него хромовой проволкой. Достигается повышение селективности и надежности анализа. Данный индикатор может быть использован без измерительной аппаратуры.

Изобретение относится к измерительной и индикаторной технике и может быть использовано как в измерительных устройствах, так и без них, в качестве визуального индикатора для контроля окружающей среды, измерения концентраций и нахождения течей вредных и дорогостоящих газов, контроля герметичности изделий, содержащих вредные химические вещества, и других устройств, применяемых в метрологии, в сельском хозяйстве, различных отраслях промышленности, в научных исследованиях.

Известно устройство - сенсор для анализа газообразных веществ (Патент РФ 2088914).

Конструктивно сенсор представляет собой диэлектрическую подложку (ситалл, сапфир, окисленный кремний) с нанесенными на нее взаимопроникающими гребенчатыми электродами. В качестве материалов электродов используются золото, платина, хром.

На гребенчатые электроды наносится из раствора мономеров анилина и силаноанилина методом электрополимеризации пленка, состоящая из двух проводящих полимеров - полисиланоанилина и полианилина в соотношении 9:1. Полученная пленка может быть модифицирована различными химическими добавками. Работа такого сенсора основана на протекании обратимых окислительно-восстановительных реакций и других взаимодействий в чувствительном слое пленки, в ходе которых меняется проводимость и другие электрофизические параметры.

Недостатком такого сенсора являются: быстрая "отравляемость" при длительном воздействии больших концентраций агрессивных газообразных веществ, сложный метод синтеза, в котором необходимо жестко контролировать процентное содержание полисиланоанилина и анилина 9:1, изготовление специальной подложки с гребенчатыми электродами с использованием ряда сложных технологических операций, невозможность использования сенсора даже без простой измерительной аппаратуры, точностные характеристики для более сложного анализа газообразных веществ.

Известен химический сенсор для анализа токсических газов и паров (Патент РФ 2169359).

Сенсор может представлять собой ткань или иной пористый материал, пропитанный полианилином, который относится к классу проводящих полимеров, легированных комплексами переходных металлов или комплексами ароматических соединений. Принцип действия сенсора основан на обратимом изменении цвета при контакте с анализируемым газом.

Недостатком такого сенсора является повышенная чувствительность к влаге и температуре, что может приводить к изменению его спектральных свойств при длительном использовании. Кроме того, органические полимеры имеют свойство стареть со временем, а нежесткость квазиодномерной решетки приводит к локализации инжектированного как при окислении, так и при восстановлении заряда в области вызванного им искажения геометрии решетки, из-за этого химический сенсор, основанный на полианилине, будет иметь малый срок годности при использовании его в качестве сенсора на газообразные вещества в больших концентрациях, являющиеся сильными окислителями, такими как фтор, хлор, озон.

Наиболее близким по технической сущности к изобретению является "Чувствительный элемент для идентификации газообразных веществ" (Патент РФ 2155958).

Чувствительный элемент представляет собой пористый материал (ткань, пористая бумага, кремниевые фильтры), в который внесены мелкодисперсные фрагменты пленки, состоящей из смеси двух проводящих полимеров: полисиланоанилина и полианилина, где процентное содержание полианилина не превышает 40% от общей массы пленки.

Недостатком такого чувствительного элемента является непригодность его использования на газообразный фтор и пары фтороводорода при их большом процентном содержании из-за высокого процентного содержания кремнийсодержащего полимера. Кроме того, полимерная смесь полианилина с полисиланоанилином при взаимодействии с каким-либо анализируемым химическим компонентом не дает большой контрастности при изменении своей цветовой гаммы.

Техническая задача заключается в создании универсального селективного индикатора токсических газов, устойчиво работающего в сильно окислительной газовой среде длительное время, и увеличении контрастности при обратимом химическом взаимодействии анализируемого газа с активным веществом индикатора.

Технический результат достигается за счет синтеза активного вещества индикатора с оптимальным содержанием кремнийсодержащего проводящего полимера полисиланоанилина и химически достаточно стойкого и хорошо подверженного модифицированию различными химическими добавками политиофена (Электрохимия полимеров, Москва: Наука, 1990, М.Р. Тарасевич, Е.И. Хрущева, Электрохимия политиофена, гл. 9, стр.146, 148).

Процесс изготовления производят следующим образом.

Сначала приготавливают смесь растворов, состоящую из 1,1-1,7 молярного раствора соляно-кислого силаноанилина и от 0,1 до 0,8 молярного раствора тиофена в тетрагидрофуране.

Первый раствор готовят путем растворения мономерного порошка силаноанилина в одномолярном водном растворе соляной кислоты, второй - растворением жидкого тиофена при температуре 10-25oС в тетрагидрофуране.

Далее растворы тщательно перемешивают между собой в соотношении 1:1 с использованием магнитной мешалки, а полученную смесь добавляют в водорастворимые модифицирующие добавки 1-5 грамм на 1 литр полученного раствора.

Модифицирующие добавки подбираются в зависимости от газообразного вещества, на которое изготовляется индикатор по следующим признакам.

На газы-восстановители используются добавки с окислительными свойствами. Так, например, на сероводород могут быть использованы гетерополикислоты 2-18 ряда. Их общую формулу можно записать следующим образом: НnxМеyОz], где Me может быть одним из переходных металлов (например, вольфрам), а числа n, x, y, z соответственно определяют число атомов в молекуле.

На газы-галогены используются соли галогенов, обладающие меньшей реакционной способностью и с большим порядковым номером. Как известно, галогены с меньшим порядковым номером вытесняют галогены с большими порядковыми номерами из их солей. Поэтому для определения хлора и фтора оптимально подходят бромиды и йодиды, например LiBr, Kl, NaBr, Lil.

Для определения паров неорганических кислот, таких как HCl, HF, которые имеют хорошую растворимость в воде, целесообразно использовать гидрофильные добавки, делая поверхность индикатора с хорошими сорбционными свойствами. Для этого оптимально использовать такие неорганические соли, как LiCl, LiBr.

Для определения аммиака модифицируют полимерную пленку оптимально анионными комплексами: [СuСl4] 2- и [NiCl4]2-. Соответственно в качестве модифицирующих добавок используются CuCl2 и NiCl2.

Модифицирующие добавки придают избирательность работе индикатора по отношению к определяемому компоненту.

Процесс активного вещества и самого изготовления чувствительного элемента производят следующим образом. Полоску пористого материала (например, капроновая ткань или нить) пропитывают смесью растворов с модифицирующими добавками, способ приготовления которых был описан выше. Далее пропитанный материал опускают в гальваническую ванну с таким же по составу раствором, каким пропитан и сам материал. Далее последний выполняет роль одного из электродов, в котором происходит рост пленки в режиме потенциостатического циклирования при потенциалах от -2.0 до -3.4 в режиме катода и от +5.7 до +7.2 в режиме анода относительно противоэлектрода, который представляет собой графитовый стержень с обвитой вокруг него хромовой проволкой. В результате электрохимического синтеза образуется активное, но достаточно стабильное вещество, которое состоит из смеси двух проводящих полимеров, модифицированных химическими добавками политиофена и полисиланоанилина в массовом соотношении 4-3:1,5-1.

Разработаны методы получения и изготовлены индикаторы на следующие вещества: HF, F2, Cl2, H2S, HCl, NН3, пары воды.

Пример. Определение наличия газообразного фтора и паров плавиковой кислоты в воздухе.

Приготовили раствор, состоящий из 1,2 молярного раствора соляно-кислого силаноанилина путем растворения монолитного порошка силаноанилина в одномолярном растворе соляной кислоты. Далее приготовили 0,2 молярный раствор тиофена в тетрагидрофуране путем растворения жидкого тиофена при температуре 20oС в тетрагидрофуране. Растворы тщательно перемешали между собой в соотношении 1:1 с использованием магнитной мешалки. Общий объем растворов составил 1 литр. В полученную смесь добавили 2 грамма бромида лития до его полного растворения. После этого полученным раствором пропитали полоску капроновой ткани с размерами 55х20х2 мм, а затем опустили в гальваническую ванну с этим же раствором. Синтезировали в режиме потенциостатического циклирования при потенциалах от -2.0 до -3.4 в режиме катода и от +5.7 до +7.2 в режиме анода относительно противоэлектрода, который представлял собой графитовый стержень с обвитой вокруг него хромовой проволокой. В ходе электрохимического синтеза была получена смесь, состоящая из двух проводящих полимеров: политиофена и полисиланоанилина в соотношении 3:1, модифицированных бромидом лития. Далее ткань высушили, цвет ткани при этом стал серый. Ткань поместили к источнику микропотока фтора с концентрацией 1 мг/м3, цвет ткани при этом изменился на розовый. При обдувке чистым воздухом цвет вернулся опять в первоначальное состояние, то есть стал серым.

Затем эту же ткань поместили в сосуд с парами плавиковой кислоты с концентрацией паров 40 мг/м3, ткань изменила свой цвет на синий. Ткань продержали в этой концентрации 48 часов, а затем обдули чистым воздухом - цвет опять стал серый.

Изготовленный индикатор показал свою селективность, универсальность и работоспособность в агрессивной среде длительное время.

Формула изобретения

Индикатор токсических газов, выполненный в виде пористой матрицы, устойчивой к агрессивным химическим средам, чувствительный элемент которого состоит из смеси модифицированных различными химическими добавками двух проводящих полимеров, содержащий полисиланоанилин, отличающийся тем, что смесь двух проводящих полимеров содержит политиофен при массовом соотношении политиофена и полисиланоанилина 4:3 - 1,5-1, которые синтезируются в режиме потенциостатического цитирования при потенциалах от -2,0 до -3,4 В в режиме катода и от +5,7 до 7,2 В в режиме анода относительно противоэлектрода, который представляет собой графитовый стержень с обвитой вокруг него хромовой проволокой.

NF4A Восстановление действия патента Российской Федерации на изобретение

Извещение опубликовано: 10.06.2005        БИ: 16/2005




 

Похожие патенты:

Изобретение относится к методам определения химического состава дизельного топлива с использованием индикатора, по изменению цвета которого можно судить о химическом составе дизельного топлива, в частности о наличии в нем депрессорных присадок

Изобретение относится к химмотологии топлив и может быть использовано для оперативного определения свинца в бензинах в заводских лабораториях нефтеперерабатывающей промышленности, нефтебазах и на заправочных пунктах

Изобретение относится к области исследования или анализа небиологических материалов химическими способами, конкретно с помощью химических индикаторов, и предназначено для выявления и идентификации взрывчатых веществ (ВВ) во внелабораторных условиях
Изобретение относится к способам исследования и анализа материалов с помощью оптических средств, в частности систем, в которых материал вступает в химическую реакцию, путем наблюдения за изменением цвета химического индикатора

Изобретение относится к средствам стерилизации и может быть использовано в ветеринарии, обработке пищевых продуктов и в различных технологических процессах, использующих стерилизацию

Изобретение относится к области измерительной техники и может быть использовано в различных отраслях промышленности, а именно в нефтехимической, топливно-энергетической и др

Изобретение относится к индикаторам для определения воды, конкретно к индикаторным полосам, способным под действием воды изменять цвет, и может быть использовано для определения границы и уровня раздела фаз между нефтепродуктами и водой в резервуарах, цистернах, танкерах, топливных баках, отстойных очистных сооружениях, где необходимо контролировать уровень воды и ее количество

Изобретение относится к аналитической химии (индикаторным составам) и может быть использовано для определения рения (VII) в водных растворах, в частности сточных водах и производственных растворах

Изобретение относится к аналитической химии, а именно к способам экстракционно-фотометрического определения производных 1,4-бенздиазепина в препарате и лекарственных формах
Изобретение относится к области аналитической химии, а именно к области определения наркотических, психотропных и сильнодействующих веществ растительного и синтетического происхождения, и может быть использовано для определения указанных веществ во внелабораторных условиях, а именно таможенных подразделениях, оперативных подразделениях МВД, а также подразделениях МВД, работающих автономно

Изобретение относится к методам определения химического состава дизельного топлива с использованием индикатора, по изменению цвета которого можно судить о химическом составе дизельного топлива, в частности о наличии в нем депрессорных присадок
Изобретение относится к способам исследования и анализа материалов с помощью оптических средств, в частности систем, в которых материал вступает в химическую реакцию, путем наблюдения за изменением цвета химического индикатора

Изобретение относится к аналитической химии, а именно к способам фотометрического определения красителя фталоцианинового зеленого, и может быть использовано для его количественного анализа в различных объектах, например в сточных водах предприятий, производящих фталоцианиновые красители или их использующих
Изобретение относится к аналитической химии элементов, а именно к методам фотометрического определения палладия, и может быть использовано в практике определения палладия в рудах, концентратах и продуктах их переработки, сплавах, различных производственных материалах, технологических растворах

Изобретение относится к методам аналитической химии и может быть использовано в лабораториях, осуществляющих контроль окружающей среды

Изобретение относится к средствам стерилизации и может быть использовано в ветеринарии, обработке пищевых продуктов и в различных технологических процессах, использующих стерилизацию

Изобретение относится к области контроля загрязнений окружающей среды высокотоксичными грибами, в частности грибами бледной поганки Amanita phalloides
Наверх