Способ приготовления золь-гельного стекла, активированного красителем

 

Изобретение относится к области квантовой электроники, а именно к способу приготовления золь-гельного стекла, активированного красителем, которое может быть использовано для лазеров на красителе в твердой матрице. Способ приготовления упомянутого стекла заключается в том, что раствор, содержащий алкоксисилан, воду, спирт и краситель, подвергают гидролизу и конденсации с последующей сушкой, причем процесс проводят в порах микропористого стекла с характерным размером пор меньше длины волны видимого света. Предлагаемый способ позволяет упростить процесс приготовления окрашенного золь-гельного стекла за счет исключения выдержки в течение 45 дней при 70oС при одновременном обеспечении стабильной работы лазера с использованием этого стекла в качестве активного элемента лазера. 1 ил.

Изобретение относится к области квантовой электроники, а именно к способу приготовления вещества твердотельного элемента лазера - золь-гельного стекла, активированного красителем. Оно может быть использовано при создании лазеров на красителе в твердой матрице.

Известен твердотельный активный элемент лазера, изготовленный из золь-гельного стекла, активированного красителем (например, пирометиновым или периленовым).

Приготовление вещества такого активного элемента включает синтез окрашенного золь-гельного стекла, заключающийся в гидролизе и конденсации алкоксисилана (кремниевого алкоголята) из раствора, содержащего алкоксисилан, воду, этиловый спирт и краситель, и последующей сушки [Mohammed Faloss, Michael Canva, Patrick Georges, Allain Brun, Frederic Chaput and Jean Pierre Boilot, Applied Optics, v.36, No 27, p.6760-6763, 1997].

Недостаток такого способа изготовления золь-гельного стекла заключается в том, что для придания ему требуемой прочности его выдерживают 45 суток при температуре 70oС. Такая технология энергоемка и сложна. Задачей предлагаемого изобретения являлось упрощение технологии приготовления золь-гельного стекла, активированного красителем.

Поставленная задача решается тем, что процесс гидролиза и конденсации алкоксисилана проводят в порах микропористого стекла (МПС) с характерным размером пор меньше длины волны видимого света.

При осуществлении предлагаемого изобретения в качестве МПС использовали образцы из стекла типа НК-3, изготовленные институтом силикатов в Санкт-Петербурге.

Нижеследующие примеры иллюстрируют предлагаемое изобретение.

Пример 1.

Раствор-предшественник окрашенного золь-гельного стекла получают смешением тетраэтоксисилана (ТЭОС), этанола и воды в отношении 1:1:1 и раствора красителя Родамина 6Ж (Р6Ж) в этаноле (концентрация Р6Ж в растворе-предшественнике составляет 1,2 10-4 М). МПС опускают в приготовленный раствор, помещенный в стеклянную колбу. Колбу закрывают алюминиевой фольгой и оставляют при комнатной температуре на сутки. По истечении суток колбу помещают в термостат с температурой 36oС до полной потери текучести (~5 суток). Из термостата колбу ставят в термошкаф и выдерживают двое суток при 50oС, после чего МПС извлекают из сухого геля и снова выдерживают двое суток при 50oС. По окончании процесса концентрация Р6Ж в готовом стекле 1,5 10-4 М.

Полученное стекло имеет форму пластины толщиной 2 мм с размером торцевой грани 10 х 15 мм2. После сушки образец обрабатывают традиционными оптическими методами. Полученный образец выдержал оптическую обработку без разрушений и был опробован в качестве активного элемента твердотельного лазера (см. Пример 3).

Пример 2.

Золь-гельное стекло, активированное красителем, готовят по методике Примера 1, но в качестве алкоксисилана используют винилтриэтоксисилан. Полученный образец выдержал оптическую обработку без разрушений.

Пример 3.

Для измерения лазерных характеристик собран твердотельный лазер на красителе с активным элементом, изготовленным по Примеру 1 (см. чертеж).

Данный лазер на красителе состоит из: 1) активного элемента 4, на который подают с помощью линзы 2 излучение накачки 1, представляющее собой вторую гармонику (530 нм) Nd:YAG лазера с модулированной добротностью; 2) двух зеркал резонатора 3 и 5 (5 является выходным зеркалом); 3) фильтра Ф, отсекающего прошедшее излучение накачки.

Для фокусировки излучения накачки используют линзу с фокусным расстоянием 19 см. Зеркало 3 имело 87% пропускания на длине волны 530 нм и имело 99,5% пропускания на длине волны генерации (580 нм - 585 нм). Зеркало 5 пропускало примерно 30% излучения генерации. Длина резонатора (L) - 25 см. L1 = 27 см (площадь пятна накачки на образце при этом составляла 1,5 10-2 см2).

Nd: YAG лазер с модулированной добротностью генерировал импульсы излучения длительностью 20 нс с частотой 1/3 Гц.

При Ен = 9 мДж технический КПД генерации составлял 22%.

При наблюдении за генерацией было произведено 600 импульсов накачки, облучающей одну и ту же точку образца. При этом не было замечено существенного падения энергии генерации, что говорит о стабильной работе в качестве активного элемента золь-гельного окрашенного стекла, полученного по предлагаемому изобретению.

Таким образом, предлагаемое изобретение позволяет значительно упростить процесс приготовления окрашенного золь-гельного стекла для твердотельного элемента лазера (исключена выдержка в течение 45 дней при 70oС) при одновременном обеспечении стабильной работы лазера с использованием этого стекла в качестве активного элемента лазера.

Формула изобретения

Способ изготовления золь-гельного стекла, активированного красителем, для твердотельного элемента лазера путем гидролиза и конденсации алкоксисилана из раствора, содержащего алкоксисилан, воду, спирт и краситель с последующей сушкой, отличающийся тем, что процесс проводят в порах микропористого стекла с характерным размером пор меньше длины волны видимого света.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области технологии стекла, а именно к изделиям из стекла, используемым в лазерном термоядерном синтезе для диагностических исследований

Изобретение относится к области получения материалов, пригодных для формирования температуроустойчивых газонепроницаемых покрытий для защиты конструкционных материалов, используемых в машиностроении и автомобилестроении

Изобретение относится к золь-гелевому процессу в целом и более конкретно к способу изготовления трубы из кварцевого стекла, содержащего высокочистую и высокоплотную двуокись кремния, в результате применения золь-гелевого процесса
Изобретение относится к области получения стекла по золь-гель технологии

Изобретение относится к получению кварцевого стекла для применения его в оптике и других отраслях
Изобретение относится к улучшенному способу получения изделий из стекла, включающему: стадию получения геля необходимого материала с помощью так называемой методики золь-гель, стадию сушки полученного геля путем нагревания под давлением в присутствии инертной жидкости и при критическом давлении и температуре растворителя, находящегося в порах геля, и завершающую стадию термической обработки для получения изделия из стекла

Изобретение относится к жаростойким волокнам, полученным золь-гельным методом, которые могут быть использованы в качестве термоизолирующих материалов, например, в опорных конструкциях тел катализаторов для борьбы с загрязнением окружающей среды в автомобильной системе каталитического дожигания выхлопных газов и фильтров для твердых частиц в отработанных газах двигателя

Изобретение относится к получению стеклянных монолитов золь-гель процессом

Изобретение относится к материалу на основе кремниевого золя, а также его применению для изготовления биологически рассасывающихся и биологически расщепляющихся силикагелевых материалов с улучшенными свойствами

Изобретение относится к способу получения высокочистого и бездефектного кварцевого стекла по золь-гель технологии

Глазурь // 2600233
Изобретение относится к составам глазурей. Технический результат - повышение термостойкости. Глазурь содержит, мас. %: SiO2 50,0-60,0; Al2O3 16,5-21,0; CaO 1,0-2,0; K2O 1,0-3,0; Na2O 1,0-2,0; B2O3 12,0-15,0; ZrO2 4,0-6,0; Cr2O3 1,5-3,0. 1 табл.

Глазурь // 2640218
Изобретение относится к составам глазурей. Технический результат – повышение термостойкости глазури. Глазурь содержит, мас.%: SiO2 47,6-50,5; Al2O3 6,0-7,3; B2O3 6,8-8,0; СаО 5,0-5,6; K2O 15,5-17,0; TiO2 1,8-3,0; 3Al2O3⋅2SiO2 12,6-13,3. 1 табл.
Наверх