Способ изготовления маски для нанесения тонких слоев в микроструктурах

 

Использование: в микроэлектронике для формирования элементов микроструктур. Сущность изобретения: в качестве материала для маски, изготавливаемой методом фотолитографии, берется монокристаллический кремний, который травится анизотропно, причем сторону маски, прилегающую к напыляемой поверхности обрабатываемого кристалла, травят одновременно с этой поверхностью. Техническим результатом изобретения является повышение точности изготовления рисунка маски. 1 ил.

Изобретение относится к области микроэлектроники и может применяться для изготовления масок, используемых для формирования элементов микроструктур, в частности микромеханических гироскопов и акселерометров.

Известен способ изготовления маски [1] путем ее механической обработки.

Недостатком известного способа является высокая трудоемкость изготовления, обусловленная необходимостью механической обработки с высокой точностью заданной топологии. Кроме того, при этом не обеспечивается достаточная точность воспроизведения размеров.

Известен также способ изготовления масок [2], при реализации которого в качестве материала масок используют биметаллический материал, обрабатываемый методами фотолитографии.

Недостатком этого способа является неточность изготовления прорезей из-за значительного бокового растравливания металла. Кроме того, металлическая маска не может плотно прилегать к монокристаллическому кремнию из-за нарушений своей плоскостности и из-за разности температурного коэффициента расширения, которое также приводит к короблению маски.

Известен также способ изготовления маски [3] из монокристаллического кремния методом фотолитографии и анизотропного травления. Исходная заготовка кристалла и маска ориентированы одинаково и имеют одинаковую проводимость и степень легирования. Форма же маскирующих участков при формировании заданных рельефов определяется ориентацией относительно базового среза, в данном случае для идентичных пластин этот срез [110]. Отличие лишь в том, что если мы формируем впадины пирамидальной формы, то никаких особых условий для защитной маски (ее геометрии) при травлении пластин в анизотропном травителе не предъявляется(см. 4). Если же формируем выпуклые поверхности, то для исходной защитной пленки SiO2 для травления в анизотропном травителе предъявляются особые требования, которые подробно описаны в [4].

Недостатком известного способа является то, что для формирования рисунков (проводников) в глубоких микроструктурах необходимо максимальное совпадение прилегающих поверхностей. Подбирая две пластины по физико-химическим свойствам и формируя рисунок методом фотолитографии на двух пластинах одинаковой ориентации и относительно одного и того же базового среза, мы не добьемся идентичности полученных поверхностей, так как наиболее важным процессом формирования поверхностей является анизотропное травление. Проводя его для каждой пластины отдельно, мы получаем технологическую погрешность от изменения температуры, концентрации травителя, т.к. поддержание этих параметров для разных травителей довольно сложная задача и требует специального дорогостоящего оборудования для поддержания этих параметров в узком диапазоне.

Задачей, на решение которой направлено изобретение, является повышение точности изготовление рисунка маски.

Поставленная задача достигается за счет того, что в способе изготовления маски из монокристаллического кремния для нанесения тонких пленок в микроструктурах методом фотолитографии и анизотропного травления, согласно изобретению, в качестве материала для маски и кристалла используют монокристаллический кремний с одинаковой кристаллографической ориентацией, одинаковой ориентацией окон в защитной пленке для травления в анизотропном травителе и физико-химическими свойствами, причем сторону маски, прилегающую к напыляемой поверхности обрабатываемого кристалла, травят одновременно с этой поверхностью в одних и тех же условиях.

Отличительными признаками заявленного способа является применение для изготовления маски и кристалла одного и того же материала, а именно монокристаллического кремния с одинаковой ориентацией, одинаковыми физико-химическими свойствами. Кроме того, применяется одновременное и в одних условиях анизотропное травление маски и обрабатываемого кристалла с целью получения на них рельефов, что обеспечивает максимальное прилегание маски и получаемого кристалла (микроструктуры).

За счет идентичности материала маски и обрабатываемого кристалла (микроструктуры) и абсолютно одинаковых условий их травления, т.е. осуществление травления в одном растворе в течение одного периода времени, отпадает необходимость в точном контроле за параметрами процесса травления, а сам процесс таким образом упрощается до предела.

Кроме того, полная идентичность материала и условий процесса вполне естественно ведут к большей идентичности получаемых изделий, т.е. повышается качество изготовления рельефов (микроструктур) и контактирование маски и кристалла друг с другом.

Предлагаемый способ иллюстрируется чертежом, на котором изображена маска 2 с выполненными на ней прорезями 1 в виде выступов и обрабатываемый кристалл 3.

Способ реализуется следующим образом. Берутся две монокристаллические кремниевые пластины с одинаковыми физико-химическими свойствами ориентации (100). Для обеспечения полной идентичности их свойств они должны быть из одной партии (с одинаковыми физико-химическими свойствами, с одинаковой степень легирования, одинаковой проводимостью и т. д.) Одна из пластин служит заготовкой для изготовления маски 1, а другая для изготовления обрабатываемого кристалла 3. Затем методом фотолитографии на плоскости (100) обеих пластин 1 и 3 формируют рельеф таким образом, что углублению на обрабатываемом кристалле 3 соответствует выступ на маске или наоборот. Анизотропное травление маски 2 и кристалла (микроструктуры) 3 осуществляют в одних условиях и одновременно, т.е. в одном и том же растворе, для создания абсолютно одинаковых условий травления и получения идентичных, но с противоположным рельефом профилей.

При промышленном изготовлении масок и устройств на их основе заявленным способом была достигнута высокая точность формирования необходимого рисунка в микроструктурах.

Источники информации 1. Р. Берри и др. Тонкопленочная технология. М.: Высшая школа, 1972, с. 133-136.

2. О.Д. Парфенов. Технология микросхем. М.: Высшая школа, с. 176.

3. Обзор "Свободные маски в технологии электронной техники" авторов Б.И. Черного и Л. И. Новоженюк. "Зарубежная электронная техника", М., 1981 , с. 9-21 (прототип) 4. В.Д. Вавилов и др. Интегральные датчики давления. Конструкция и технология. М.: Издательство МАИ, 2001, с. 26-33.

Формула изобретения

Способ изготовления маски из монокристаллического кремния для нанесения тонких пленок в микроструктурах методом фотолитографии и анизотропного травления, отличающийся тем, что в качестве материала для маски и обрабатываемого кристалла используют идентичные монокристаллические пластины одинаковой ориентации (100) и формируют на них рельеф таким образом, чтобы углубление на обрабатываемом кристалле соответствовало выступу на маске или наоборот, причем сторону маски, прилегающую к напыляемой поверхности обрабатываемого кристалла, травят одновременно с этой поверхностью в одном и том же растворе.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области приборостроения и может применяться для изготовления элементов, используемых в конструкциях микромеханических устройств, например чувствительных элементов гироскопов и акселерометров, изготавливаемых методами микроэлектроники

Изобретение относится к электронной технике, а именно к технологии изготовления дискретных приборов и интегральных схем

Изобретение относится к технологии полупроводниковых приборов и предназначено для изготовления ряда полупроводниковых приборов, функциональное назначение которых требует формирования активных областей на тонких мембранах, например фото- и электронно-чувствительные матрицы, тензодатчики, газовые сенсоры и т.п

Изобретение относится к электронной технике, преимущественно к изготовлению полупроводниковых схем памяти высокой степени интеграции на МДП-транзисторах

Изобретение относится к технологии изготовления полупроводниковых приборов на фосфиде галлия с ориентацией100} и может быть использовано в локально-эпитаксиальной и мезапланарной технологии изготовления полупроводниковых приборов

Изобретение относится к электронной технике, а более конкретно к технологии изготовления интегральных схем, и может быть использовано для изготовления биполярных интегральных схем

Изобретение относится к микроэлектронике и может быть использовано при изготовлении твердотельных приборов и интегральных схем

Изобретение относится к области приборостроения и может применяться для изготовления упругих элементов микромеханических устройств, используемых, в частности, для подвеса чувствительных масс микромеханических акселерометров

Изобретение относится к микромеханике, преимущественно к технологии изготовления микропрофилированных интегральных механоэлектрических тензопреобразователей, и может быть использовано при разработке и производстве интегральных датчиков механических величин или микроэлектромеханических систем, содержащих трехмерные кремниевые микроструктуры

Изобретение относится к области приборостроения и может применяться для изготовления упругих элементов, используемых, в частности, для подвеса чувствительных масс микромеханических измерительных устройств, например кремниевых гироскопов и акселерометров
Изобретение относится к области производства полупроводниковых кремниевых приборов

Изобретение относится к микроэлектронике и может быть использовано для получения рельефа в диэлектрических и пьезоэлектрических подложках, содержащих в своем составе двуокись кремния, при изготовлении микромеханических приборов, кварцевых резонаторов и т.д

Изобретение относится к электронной технике и может быть использовано при изготовлении полупроводниковых приборов и интегральных микросхем, а также однослойных и многослойных печатных плат

Изобретение относится к области технологических процессов изготовления микросистемной техники

Изобретение относится к микро- и наноэлектронике и может быть использовано в производстве интегральных кремниевых химических и биосенсоров для автоматизированного контроля окружающей среды, в экологии, в химическом производстве, в биологии и медицине

Изобретение относится к электронной технике и может быть использовано при изготовлении полупроводниковых приборов и интегральных микросхем, а также однослойных и многослойных печатных плат для радиоэлектронной аппаратуры

Изобретение относится к технологии формирования наноэлектронных структур
Наверх