Способ карбонилирования

 

Настоящее изобретение относится к способу карбонилирования при получении уксусной кислоты. Способ осуществляют путем удаления более высокомолекулярных органических иодидов, включающих гексилиодид из уксусной кислоты, полученной карбонилированием метанола и/или его реакционноспособного производного в присутствии воды в ограниченной концентрации, благородного металла группы VIII в качестве катализатора, метилиодида в качестве сокатализатора и необязательно промотора для катализатора. В качестве катализатора используют родий или иридий. Промотор представляет собой металлсодержащий промотор, неорганический иодид или органический иодид. Водную смесь, содержащую уксусную кислоту и по меньшей мере один более высокомолекулярный органический иодид, обрабатывают в дистилляционной колонне или секции колонны. Отделяют воду в виде головного погона от фракции сухой уксусной кислоты, где концентрация воды на питательной тарелке колонны или секции колонны составляет свыше 8 мас. %, предпочтительно 8-14 мас.%, и концентрация воды в головке колонны или секции колонны составляет более 70 мас.%, предпочтительно 70-85 мас. %. Способ осуществляют под манометрическим давлением 10100 бар и при температуре 100300oС. Технический результат - увеличение чистоты целевого продукта. 9 з.п. ф-лы.

Настоящее изобретение относится к способу карбонилирования при получении уксусной кислоты, в частности к способу получения уксусной кислоты карбонилированием метанола и/или его реакционноспособного производного в присутствии благородного металла группы VIII в качестве катализатора, метилиодида в качестве сокатализатора, необязательно промотора и воды в ограниченной концентрации.

Способы гомогенного жидкофазного получения уксусной кислоты проведением катализируемого благородным металлом группы VIII и сокатализируемого алкилгалогенидом взаимодействия монооксида углерода с метанолом и/или его реакционноспособным производным хорошо известны. Способы с использованием родия в качестве благородного металла как катализатора описаны, например, в GB 1233121, ЕР-А 0384652 и ЕР-А 0391680. Способы с использованием иридия в качестве благородного металла как катализатора описаны, например, в GB 1234121, US 3772380, DE 1767150, ЕР-А 0616997, ЕР-А 0618184, ЕР-А 0618183, ЕР-А 0657386 и WO 95/31426. Во всем мире способы карбонилирования при получении уксусной кислоты в присутствии либо родиевого, либо иридиевого катализатора карбонилирования в промышленном масштабе осуществляют в нескольких местах.

У Howard и др. в журнале Catalysis Today, 18 (1993), 325-354 описано катализируемое родием и иридием карбонилирование метанола до уксусной кислоты. Непрерывный катализируемый родием гомогенный процесс карбонилирования метанола включает, как сказано, три основных участка: реакции, очистки и обработки отходящих газов. На участке реакции предусмотрены реактор с мешалкой, работающий при повышенных температуре и давлении, и сосуд для однократного равновесного испарения. Жидкую реакционную смесь отводят из реактора и через клапан мгновенного испарения направляют в сосуд для однократного равновесного испарения, в котором происходит испарение большей части легких компонентов жидкой реакционной смеси (метилиодида, метилацетата и воды) совместно с получаемой уксусной кислотой. Далее паровую фракцию направляют на участок очистки, тогда как жидкую фракцию (включающую родиевый катализатор и уксусную кислоту) возвращают в реактор (см. фиг.2 в работе Howard и др.). Участок очистки включает, как сказано, первую ректификационную колонну (колонну для легких фракций), вторую ректификационную колонну (сушильную колонну) и третью ректификационную колонну (колонну для тяжелых фракций) (см. фиг.3 в работе Howard и др.). В колонне для легких фракций метилиодид и метилацетат удаляют в виде головного погона совместно с некоторой долей воды и уксусной кислоты. Пар конденсируют и в аппарате для декантации конденсату дают разделиться на две фазы, причем обе фазы возвращают в реактор. Из колонны для легких фракций в виде боковой фракции отводят мокрую уксусную кислоту и ее направляют в сушильную колонну, в которой в виде головного погона удаляют воду, а из основания этой ректификационной колонны отводят поток практически сухой уксусной кислоты. На представленной в работе Howard и др. фиг.3 можно видеть, что поток водного головного погона из сушильной колонны возвращают на участок реакции. Из основания колонны для тяжелых фракций удаляют тяжелые жидкие побочные продукты, а получаемую уксусную кислоту отводят в виде бокового потока. Было предложено упростить участок очистки устранением одной или нескольких дистилляционных колонн, что позволяет сэкономить на капитальных затратах и/или технологических расходах при работе установки. Так, например, в ЕР-А 0849250 (дело фирмы БП 8644) авторами настоящего изобретения описан способ получения технологического потока уксусной кислоты, включающего менее 400 ч./млн пропионовой кислоты и менее 1500 ч./млн воды, при осуществлении которого предусмотрены следующие стадии: (а) подача метанола и/или его реакционноспособного производного и монооксида углерода в реактор для карбонилирования, в котором в ходе проведения процесса поддерживают состав жидкой реакционной смеси, включающей: (I) иридиевый катализатор карбонилирования, (II) метилиодидный сокатализатор, (III) один или несколько необязательных промоторов, выбранных из группы, включающей рутений, осмий, рений, кадмий, ртуть, цинк, галлий, иридий и вольфрам, (IV) ограниченное количество воды при концентрации менее чем приблизительно 8 мас.%, (V) метилацетат, (VI) уксусную кислоту и (VII) пропионовую кислоту как побочный продукт и ее предшественники; (б) отвод жидкой реакционной смеси из реактора для карбонилирования и ввод по меньшей мере части отводимой жидкой реакционной смеси с добавлением или без добавления тепла в зону однократного равновесного испарения с получением паровой фракции, включающей воду, получаемую уксусную кислоту, пропионовую кислоту как побочный продукт, метилацетат, метилиодид и предшественники пропионовой кислоты, и жидкой фракции, включающей нелетучий иридиевый катализатор, нелетучий необязательный промотор или промоторы, уксусную кислоту и воду,
(в) возврат этой жидкой фракции из зоны однократного равновесного испарения в реактор для карбонилирования,
(г) ввод паровой фракции из зоны однократного равновесного испарения в первую зону дистилляции,
(д) удаление из первой зоны дистилляции в точке, находящейся над точкой ввода паровой фракции зоны однократного равновесного испарения, рециклового потока легких фракций, включающего воду, метилацетат, метилиодид, уксусную кислоту и предшественники пропионовой кислоты, с последующим возвратом всего этого потока или его части в реактор для карбонилирования и
(е) удаление из первой зоны дистилляции в точке, находящейся под точкой ввода паровой фракции зоны однократного равновесного испарения, технологического потока, включающего получаемую уксусную кислоту, пропионовую кислоту как побочный продукт и менее 1500 ч./млн воды, а также
(ж) если технологический поток, удаляемый на стадии (е), содержит свыше 400 ч./млн пропионовой кислоты, ввод этого потока во вторую дистилляционную колонну, отвод в точке, находящейся под точкой ввода потока со стадии (е), пропионовой кислоты как побочного продукта, а в точке, находящейся над точкой ввода этого потока со стадии (е), технологического потока уксусной кислоты, содержащего менее 400 ч./млн пропионовой кислоты и менее 1500 ч./млн воды.

В дополнение к загрязнению пропионовой кислотой, в ходе проведения катализируемого благородным металлом группы VIII и сокатализируемого метилиодидом процесса карбонилирования метанола и/или его реакционноспособного производного в качестве примесей образуются также более высокомолекулярные органические иодиды, прежде всего органические иодиды в интервале С57, основным среди которых является гексилиодид. Гексилиодид с уксусной кислотой образует азеотроп с постоянной температурой кипения, вследствие чего его удаление из технологических потоков уксусной кислоты дистилляцией сопряжено с технологическими затруднениями. Если для удаления гексилиодида не осуществлять дополнительных недистилляционных стадий, таких, как введение в контакт с ионообменной смолой, содержащей серебряный или ртутный катион, или другим адсорбентом, в очищенной уксусной кислоте как продукте этот гексилиодид может, следовательно, содержаться в значительных количествах. Это нежелательно, поскольку из-за его присутствия в уксусной кислоте последняя впоследствии может оказаться непригодной для применения в некоторых областях техники. Обработка адсорбентом, например, ионообменной смолой, содержащей металлические ионы, сопряжена с экономическими потерями. Таким образом, существует потребность в удалении более высокомолекулярных органических иодидов во время дистилляционной очистки сырой уксусной кислоты.

Было установлено, что более высокомолекулярные органические иодиды, в частности гексилиодид, могут быть удалены из их смеси с уксусной кислотой, полученной карбонилированием, в дистилляционной колонне путем регулирования в этой колонне профиля концентрации воды таким образом, чтобы значения концентрации воды на питательной тарелке колонны и в головке колонны находились в определенных пределах. Избыток воды (сверх ранее применявшегося количества) удаляет с образованием азеотропа более высокомолекулярные органические иодиды, переводя их в верхнюю часть колонны, откуда их можно отводить в виде головного погона.

Таким образом, по настоящему изобретению предлагается способ удаления более высокомолекулярных органических иодидов, включающих гексилиодид, из уксусной кислоты как продукта, полученного карбонилированием метанола и/или его реакционноспособного производного в присутствии воды в ограниченной концентрации, благородного металла группы VIII в качестве катализатора, метилиодида в качестве сокатализатора и необязательно промотора для катализатора, причем этот способ включает стадию обработки водной смеси, содержащей уксусную кислоту и по меньшей мере один более высокомолекулярный органический иодид, в дистилляционной колонне или секции колонны, отделение воды в виде головного погона от фракции сухой уксусной кислоты, где концентрация воды на питательной тарелке колонны или секции колонны составляет свыше 8 мас. % и/или концентрация воды в головке колонны или секции колонны составляет более 70 мас.%.

Концентрация воды на питательной тарелке колонны или секции колонны составляет свыше 8 мас.%, предпочтительно превышает 10 мас.%, как правило, равна 8-14 мас.%, например 10-14 мас.%. Концентрация воды в головке колонны или секции колонны составляет более 70 мас.%, предпочтительно превышает 75 мас. %, как правило, равна 70-85 мас.%.

Преимущество регулирования профиля концентрации воды в дистилляционной колонне или ее части по способу, предлагаемому в соответствии с изобретением, заключается в том, что, например, концентрацию гексилиодида, которая в уксусной кислоте перед дистилляцией, как правило, составляет примерно 120 ч. /млрд, можно снизить до 5 ч./млрд или меньше. Поскольку проталкивание воды в верхнюю часть колонны или ее секции сопряжено с экономическими технологическими потерями, которые меньше тех, с которыми обычно связано достижение этого целевого результата, повышается экономичность разделения.

Способ по настоящему изобретению можно осуществлять, например, в сушильной колонне, описанной у Howard и др. В одном из вариантов выполнения настоящего изобретения предлагается способ получения уксусной кислоты, который включает следующие стадии:
(а) подачу метанола и/или его реакционноспособного производного и монооксида углерода в реактор для карбонилирования, в котором в ходе проведения процесса поддерживают состав жидкой реакционной смеси, включающей (I) благородный металл группы VIII в качестве катализатора карбонилирования, (II) метилиодидный сокатализатор, (III) (а) в случае, когда благородный металл группы VIII как катализатор представляет собой родий, один или несколько необязательных промоторов такого типа, как образующий иодидную соль, например, иодид лития, (б) в случае, когда благородный металл группы VIII как катализатор представляет собой иридий, один или несколько необязательных промоторов, выбранных из группы, включающей рутений, осмий, рений, кадмий, ртуть, цинк, галлий, индий и вольфрам, (IV) ограниченное количество воды, (V) метилацетат, (VI) уксусную кислоту, (VII) более высокомолекулярные органические иодиды, включая гексилиодид, как побочные продукты, а также пропионовую кислоту как побочный продукт и ее предшественники,
(б) отвод жидкой реакционной смеси из реактора для карбонилирования и ввод по меньшей мере части этой отводимой жидкой реакционной смеси с добавлением или без добавления тепла в зону однократного равновесного испарения с получением паровой фракции, включающей воду, получаемую уксусную кислоту, более высокомолекулярные органические иодиды как побочные продукты, метилацетат, метилиодид, пропионовую кислоту как побочный продукт и предшественники пропионовой кислоты, и жидкой фракции, включающей нелетучий благородный металл группы VIII как катализатор, нелетучий необязательный промотор или промоторы, уксусную кислоту и воду,
(в) возврат этой жидкой фракции из зоны однократного равновесного испарения в реактор для карбонилирования,
(г) ввод паровой фракции из зоны однократного равновесного испарения в первую зону дистилляции,
(д) удаление из первой зоны дистилляции в точке, находящейся над точкой ввода паровой фракции зоны однократного равновесного испарения, рециклового потока легких фракций, включающего воду, метилацетат, метилиодид, уксусную кислоту и предшественники пропионовой кислоты, с последующим возвратом всего этого потока или его части в реактор для карбонилирования,
(е) удаление из первой зоны дистилляции в виде бокового потока в точке, находящейся под точкой ввода паровой фракции зоны однократного равновесного испарения, потока, включающего уксусную кислоту, воду, пропионовую кислоту как побочный продукт и более высокомолекулярные органические иодиды как побочные продукты,
(ж) ввод этого бокового потока со стадии (е) в промежуточной точке второй зоны дистилляции, в которой концентрация воды на питательной тарелке колонны составляет свыше 8 мас.% и/или концентрация воды в головке колонны составляет более 70 мас.%,
(з) удаление из второй зоны дистилляции головной фракции, включающей воду и более высокомолекулярные органические иодиды, и в точке, которая находится ниже точки ввода исходного материала, фракции, включающей получаемую уксусную кислоту и пропионовую кислоту как побочный продукт со значительно уменьшенными количествами более высокомолекулярных органических иодидов.

В этом варианте концентрацию воды на питательной тарелке колонны целесообразно поддерживать на уровне свыше 8 мас.% регулированием количества головной фракции, отводимой из второй зоны дистилляции, которую после конденсации в виде флегмы возвращают в колонну. Концентрацию воды в головке колонны отчасти поддерживают на уровне свыше 70 мас.% по такому же методу.

Головную фракцию, удаляемую из второй зоны дистилляции на стадии (з), включающую воду и более высокомолекулярные органические иодиды, целесообразно возвращать в реактор для карбонилирования в виде жидкости. В реакторе гексилиодид превращают в гептановую кислоту, которая в концентрации, выражаемой в частях на миллиард, не создает проблем как примесь в уксусной кислоте. Поток этой головной фракции можно подвергать необязательной дальнейшей обработке в дистилляционных процессах с целью удалить органические иодиды.

В другом варианте способ по настоящему изобретению можно осуществлять в секции колонны, в которой проводят также другие операции разделения дистилляцией, например, в такой, как комбинированная колонна легких погонов/сушки или комбинированная колонна легких погонов/сушки/тяжелых погонов, которая описана в вышеупомянутой заявке ЕР-А 0849250.

Таким образом, в соответствии с другим вариантом выполнения настоящего изобретения предлагается способ получения уксусной кислоты, который включает следующие стадии:
(а)-(в), как они описаны выше,
(г) ввод паровой фракции из зоны однократного равновесного испарения в первую зону дистилляции, причем эта первая зона дистилляции включает верхнюю секцию, в которой водную композицию, содержащую уксусную кислоту и по меньшей мере один более высокомолекулярный органический иодид, отделяют в составе водного головного погона от фракции сухой уксусной кислоты, причем концентрация воды на питательной тарелке составляет свыше 8 мас.%, а концентрация воды в головке этой секции превышает 70 мас.%,
(д) удаление из первой зоны дистилляции головной паровой фракции, включающей воду, более высокомолекулярные органические иодиды, метилацетат, метилиодид, предшественники пропионовой кислоты и уксусную кислоту,
(е) конденсацию головной паровой фракции со стадии (д) и подачу конденсата в аппарат для декантации, в котором ее разделяют на богатую метилиодидом фазу и водную фазу, причем богатую метилиодидом фазу возвращают в реактор для карбонилирования, а водную фазу разделяют и часть возвращают в виде флегмы в первую зону дистилляции, а остальное возвращают в реактор для карбонилирования,
(ж) удаление из первой зоны дистилляции в точке, находящейся под точкой ввода паровой фракции зоны однократного равновесного испарения, технологического потока, включающего сухую уксусную кислоту и пропионовую кислоту как побочный продукт, а также
(з) необязательное введение указанного потока во вторую зону дистилляции,
(и) удаление из второй зоны дистилляции хвостовой фракции, включающей пропионовую кислоту, и
(к) удаление из второй зоны дистилляции боковой фракции, включающей сухую уксусную кислоту как продукт, содержащую менее 250 ч./млн пропионовой кислоты.

В реактор для карбонилирования подают метанол и/или его реакционноспособное производное, например, метилацетат, диметиловый эфир или метилиодид.

Ограниченная концентрация воды, в которой она содержится в жидкой реакционной смеси, как правило, составляет 0,1-30, в частности 0,1-15, предпочтительно 0,5-10, более предпочтительно 1-6 мас.%.

Вода может образовываться in situ в ходе проведения реакции карбонилирования, например, вследствие реакции этерификации между метанолом и/или его реакционноспособным производным как реагентом и получаемой карбоновой кислотой. Воду можно вводить в реактор для карбонилирования совместно с другими жидкими реагентами или отдельно от них. Воду можно выделять из жидкой реакционной смеси, отводимой из реактора, и возвращать в процесс в количествах, регулируемых для поддержания требуемой концентрации воды в жидкой смеси реакции карбонилирования.

Из благородных металлов группы VIII предпочтительны родий и иридий. Благородный металл группы VIII может содержаться в жидкой реакционной смеси в любой форме, которая растворима в этой смеси. Его можно вводить в жидкую реакционную смесь в любой форме, которая растворима в этой смеси или способна переходить в растворимую форму. Примеры пригодных для этой цели родийсодержащих соединений, которые можно вводить в жидкую реакционную смесь, включают [Rh(CO)2Cl] 2, [Rh(CO)2I]2, [Rh(Cod)Cl]2, хлорид родия(III), иодид родия(III), ацетат родия(III), дикарбонилацетилацетонат родия, RhCl3(РРh3)3 и RhCl(CO)(РРh3)2. В предпочтительном варианте иридий используют в виде бесхлоридного соединения, такого, как карбоксилатная соль, в частности ацетат, которое растворимо в одном или нескольких компонентах жидкой реакционной смеси, например, в воде и/или уксусной кислоте, благодаря чему его можно вводить в реакцию в виде раствора. Примеры приемлемых иридийсодержащих соединений, которые можно вводить в жидкую реакционную смесь, включают IrСl3, IrI3, IrВr3, [Ir(СО)2I] 2, [Ir(CO)2Cl] 2, [Ir(CO)2Br]2, [Ir(CO)4I2]-Н+,
[Ir(CO)2Br2]-Н+, [Ir(CO)2I2]-Н+, [Ir(CH3)I3(CO)2]-Н+, Ir4(CO)12, IrСl34H2O, IrBr34H2O, Ir3(СО)12, иридий металлический, Ir2О3, IrO2, Ir(acac)(CO)2, Ir(acac)3, ацетат иридия, [Ir3О(ОАс)62О)3][ОАс] и гексахлориридиевую кислоту [H2IrCl6], предпочтительно бесхлоридные комплексы иридия, такие, как ацетаты, оксалаты и ацетоацетаты.

Предпочтительная концентрация катализатора в жидкой реакционной смеси составляет 50-5000 мас.ч./млн, более предпочтительно 100-2500 мас.ч./млн в пересчете на металл.

В качестве сокатализатора в жидкой реакционной смеси используют метилиодид. Приемлемая концентрация метилиодида в жидкой реакционной смеси составляет 1-30 мас.%, более предпочтительно 1-20 мас.%, например, 1-10 мас.%.

Жидкая реакционная смесь может включать один или несколько необязательных промоторов. Обычно выбор промотора в определенной степени зависит от природы каталитического металла. В случае использования иридия в качестве катализатора предпочтительно применять металлсодержащие промоторы. В качестве приемлемого металла промотора можно использовать один или несколько таких металлов, как осмий, рений, рутений, кадмий, ртуть, цинк, галлий, иридий и вольфрам.

Предпочтительный промотор выбирают из рутения и осмия, а более предпочтительным является рутений. Промотор может представлять собой любое соединение, содержащее промоторный металл, которое растворимо в жидкой реакционной смеси. Промотор можно вводить в жидкую реакционную смесь в любой приемлемой форме, в которой он растворим в этой жидкой реакционной смеси или способен переходить в растворимую форму. Примеры пригодных для этой цели соединений, содержащих промоторные металлы, включают карбоксилатные соли, например, ацетаты, и карбонильные комплексы. В предпочтительном варианте используют бесхлоридные соединения. Предпочтительные соединения промоторных металлов не содержат примесей, с которыми попадают или которые образуют in situ иодидные ионы, способные ингибировать реакцию в присутствии иридиевых катализаторов, например, соли щелочных или щелочноземельных металлов, или других металлов.

В предпочтительном варианте промотор применяют в эффективном количестве, вплоть до предела его растворимости в жидкой реакционной смеси. Приемлемое содержание промотора в жидкой реакционной смеси таково, что молярное соотношение между каждым промотором (когда его применяют) и иридием составляет [0,1-100] :1, предпочтительно [свыше 0,5]:1, более предпочтительно от [более 1]:1 до [20:]1, преимущественно [до 15]:1 и наиболее предпочтительно [до 10] : 1. Было установлено, что благоприятное действие промотора, такого, как рутений, оказывается самым сильным при такой концентрации воды, которая обеспечивает максимальную скорость карбонилирования при любой определимой концентрации метилацетата и метилиодида. Приемлемая концентрация промотора составляет 400-5000 ч./млн.

В случае использования родия в качестве катализатора карбонилирования предпочтительными для применения являются иодидные промоторы. При этом можно применять как неорганические, так и органические иодиды. Приемлемые неорганические иодиды включают иодиды щелочных металлов и щелочноземельных металлов. Предпочтительным иодидом металла является иодид лития. Иодиды можно вводить как таковые или в форме солей, например, карбоксилатных солей, таких, как ацетаты, которые в условиях карбонилирования способны превращаться в иодиды. В другом варианте можно использовать органические иодиды, соответственно выбранные из иодидов четвертичного аммония, пиридиния и пиколиния.

Для введения в процесс карбонилирования можно использовать практически чистый монооксид углерода или содержащий примеси, такие, как диоксид углерода, метан, азот, инертные газы, воду и парафиновые С14углеводороды. Присутствие водорода в монооксиде углерода обычно нежелательно. Приемлемое парциальное манометрическое давление монооксида углерода в реакционном сосуде для карбонилирования может находиться в интервале от 1 до 70 бар, предпочтительно от 1 до 35 бар, более предпочтительно от 1 до 15 бар.

Общее приемлемое манометрическое давление в ходе проведения процесса карбонилирования составляет 10-100 бар. Приемлемая температура, при которой проводят процесс карбонилирования, составляет 100-300oС, предпочтительно 150-220oС. Далее способ по настоящему изобретению проиллюстрирован со ссылками на прилагаемые пример и сравнительное испытание.

Сравнительное испытание (пример 1)
В сушильную колонну направляли фракцию, которая включала уксусную кислоту, воду и гексилиодид, отводимую в виде боковой фракции из колонны для легких фракций, отделяя в виде головного погона рецикловый поток легких фракций, включающий воду, метилацетат, метилиодид, уксусную кислоту и предшественники пропионовой кислоты, причем в колонну для легких фракций подавали летучую фракцию, включавшую получаемую уксусную кислоту, воду, более высокомолекулярные органические иодиды, метилацетат, метилиодид, пропионовую кислоту как побочный продукт и предшественники пропионовой кислоты, выделенную из жидкой фракции, включавшей нелетучий родиевый катализатор, уксусную кислоту и воду, в сосуде для однократного равновесного испарения, в который вводили жидкий продукт, полученный из процесса, катализируемого родием и сокатализируемого метилиодидом карбонилирования метанола в присутствии воды.

В течение семи календарных месяцев концентрация воды на питательной тарелке сушильной колонны находилась в интервале от 9 до 14 мас.%, а концентрация воды в головных водяных погонах находилась в диапазоне от примерно 35 до 68 мас. %. В течение этого периода времени концентрация гексилиодида в уксусной кислоте, отводимой из основания колонны, в среднем находилась в интервале от примерно 20 до 120 ч./млрд.

Пример 2
Сравнительное испытание продолжали в течение более чем 12 месяцев в идентичном режиме, за исключением того, что концентрацию воды на питательной тарелке сушильной колонны поддерживали в интервале 10-14 мас.%, преимущественно 10-12 мас.%, а концентрацию воды в головных погонах поддерживали в среднем в диапазоне 70-85 мас.%, преимущественно 75-85 мас.%. В течение этого периода времени концентрация гексилиодида в уксусной кислоте, отводимой из основания колонны, в среднем составляла менее 5 ч./млрд.


Формула изобретения

1. Способ удаления более высокомолекулярных органических иодидов, включающих гексилиодид, из уксусной кислоты как продукта, полученного карбонилированием метанола и/или его реакционноспособного производного в присутствии воды в ограниченной концентрации, благородного металла группы VIII в качестве катализатора, метилиодида в качестве сокатализатора и необязательно промотора для катализатора, причем этот способ включает стадию обработки водной смеси, содержащей уксусную кислоту и по меньшей мере один более высокомолекулярный органический иодид, в дистилляционной колонне или секции колонны, отделение воды в виде головного погона от фракции сухой уксусной кислоты, где концентрация воды на питательной тарелке колонны или секции колонны составляет свыше 8 мас.% и концентрация воды в головке колонны или секции колонны составляет более 70 мас.%.

2. Способ по п.1, в котором концентрация воды на питательной тарелке колонны составляет 8-14%.

3. Способ по п.1 или 2, в котором концентрация воды в головке колонны составляет 70-85 мас.%.

4. Способ по любому из предыдущих пунктов, в котором ограниченная концентрация воды в жидкой реакционной смеси составляет 0,1-30 мас.%.

5. Способ по любому из предыдущих пунктов, в котором благородный металл группы VIII в качестве катализатора представляет собой родий или иридий.

6. Способ по п.5, в котором содержание катализатора в жидкой реакционной смеси составляет 50-5000 мас.ч./млн в пересчете на металл.

7. Способ по любому из предыдущих пунктов, в котором промотор представляет собой металлсодержащий промотор, неорганический иодид или органический иодид.

8. Способ по любому из предыдущих пунктов, который осуществляют под манометрическим давлением 10-100 бар и при температуре 100-300oС.

9. Способ по любому из предыдущих пунктов, который включает следующие стадии: (а) подачу метанола и/или его реакционноспособного производного и монооксида углерода в реактор для карбонилирования, в котором в ходе проведения процесса поддерживают состав жидкой реакционной смеси, включающей (I) благородный металл группы VIII в качестве катализатора карбонилирования, (II) метилиодидный сокатализатор, (III) (а) в случае, когда благородный металл группы VIII как катализатор представляет собой родий, один или несколько необязательных промоторов такого типа, как образующий иодидную соль, например, иодид лития, (б) в случае, когда благородный металл группы VIII как катализатор представляет собой иридий, один или несколько необязательных промоторов, выбранных из группы, включающей рутений, осмий, рений, кадмий, ртуть, цинк, галлий, индий и вольфрам, (IV) ограниченное количество воды, (V) метилацетат, (VI) уксусную кислоту, (VII) более высокомолекулярные органические иодиды, включая гексилиодид, как побочные продукты, а также пропионовую кислоту как побочный продукт и ее предшественники, (б) отвод жидкой реакционной смеси из реактора для карбонилирования и ввод по меньшей мере части этой отводимой жидкой реакционной смеси с добавлением или без добавления тепла в зону однократного равновесного испарения с получением паровой фракции, включающей воду, получаемую уксусную кислоту, более высокомолекулярные органические иодиды как побочные продукты, метилацетат, метилиодид, пропионовую кислоту как побочный продукт и предшественники пропионовой кислоты, и жидкой фракции, включающей нелетучий благородный металл группы VIII как катализатор, нелетучий необязательный промотор или промоторы, уксусную кислоту и воду, (в) возврат этой жидкой фракции из зоны однократного равновесного испарения в реактор для карбонилирования, (г) ввод паровой фракции из зоны однократного равновесного испарения в первую зону дистилляции, (д) удаление из первой зоны дистилляции в точке, находящейся над точкой ввода паровой фракции зоны однократного равновесного испарения, рециклового потока легких фракций, включающего воду, метилацетат, метилиодид, уксусную кислоту и предшественники пропионовой кислоты, с последующим возвратом всего этого потока или его части в реактор для карбонилирования, (е) удаление из первой зоны дистиллляции в виде бокового потока в точке, находящейся под точкой ввода паровой фракции зоны однократного равновесного испарения, потока, включающего уксусную кислоту, воду, пропионовую кислоту как побочный продукт и более высокомолекулярные органические иодиды как побочные продукты, (ж) ввод этого бокового потока со стадии (е) в промежуточной точке второй зоны дистилляции, в которой концентрация воды на питательной тарелке колонны составляет выше 8 мас. % и концентрация воды в головке колонны составляет более 70 мас. %, (з) удаление из второй зоны дистилляции головной фракции, включающей воду и более высокомолекулярные органические иодиды, и в точке, которая находится ниже точки ввода исходного материала, фракции, включающей получаемую уксусную кислоту и пропионовую кислоту как побочный продукт со значительно уменьшенными количествами более высокомолекулярных органических иодидов.

10. Способ по любому из пп.1-8, который включает следующие стадии: (а) подачу метанола и/или его реакционноспособного производного и монооксида углерода в реактор для карбонилирования, в котором в ходе проведения процесса поддерживают состав жидкой реакционной смеси, включающей (I) благородный металл группы VIII в качестве катализатора карбонилирования, (II) метилиодидный сокатализатор, (III) (а) в случае, когда благородный металл группы VIII как катализатор представляет собой родий, один или несколько необязательных промоторов такого типа, как образующий иодидную соль, например, иодид лития, (б) в случае, когда благородный металл группы VIII как катализатор представляет собой иридий, один или несколько необязательных промоторов, выбранных из группы, включающей рутений, осмий, рений, кадмий, ртуть, цинк, галлий, индий и вольфрам, (IV) ограниченное количество воды, (V) метилацетат, (VI) уксусную кислоту, (VII) более высокомолекулярные органические иодиды, включая гексилиодид, как побочные продукты, а также пропионовую кислоту как побочный продукт и ее предшественники, (б) отвод жидкой реакционной смеси из реактора для карбонилирования и ввод по меньшей мере части этой отводимой жидкой реакционной смеси с добавлением или без добавления тепла в зону однократного равновесного испарения с получением паровой фракции, включающей воду, получаемую уксусную кислоту, более высокомолекулярные органические иодиды как побочные продукты, метилацетат, метилиодид, пропионовую кислоту как побочный продукт и предшественники пропионовой кислоты, и жидкой фракции, включающей нелетучий благородный металл группы VIII как катализатор, нелетучий необязательный промотор или промоторы, уксусную кислоту и воду, (в) возврат этой жидкой фракции из зоны однократного равновесного испарения в реактор для карбонилирования, (г) ввод паровой фракции из зоны однократного равновесного испарения в первую зону дистилляции, причем эта первая зона дистилляции включает верхнюю секцию, в которой водную композицию, содержащую уксусную кислоту и по меньшей мере один более высокомолекулярный органический иодид, отделяют в составе водного головного погона от фракции сухой уксусной кислоты, причем концентрация воды на питательной тарелке составляет свыше 8 мас.%, а концентрация воды в головке этой секции превышает 70 мас.%, (д) удаление из первой зоны дистилляции головной паровой фракции, включающей воду, более высокомолекулярные органические иодиды, метилацетат, метилиодид, предшественники пропионовой кислоты и уксусную кислоту, (е) конденсацию головной паровой фракции со стадии (д) и подачу конденсата в аппарат для декантации, в котором ее разделяют на богатую метилиодидом фазу и водную фазу, причем богатую метилиодидом фазу возвращают в реактор для карбонилирования, а водную фазу разделяют и часть возвращают в виде флегмы в первую зону дистилляции, а остальное возвращают в реактор для карбонилирования, (ж) удаление из первой зоны дистилляции в точке, находящейся под точкой ввода паровой фракции зоны однократного равновесного испарения, технологического потока, включающего сухую уксусную кислоту и пропионовую кислоту как побочный продукт, а также (з) необязательное введение указанного потока во вторую зону дистилляции, (и) удаление из второй зоны дистилляции хвостовой фракции, включающей пропионовую кислоту, и (к) удаление из второй зоны дистилляции боковой фракции, включающей сухую уксусную кислоту как продукт, содержащую менее 250 ч./млн пропионовой кислоты.



 

Похожие патенты:

Изобретение относится к каталитической композиции для селективного окисления этана и/или этилена до уксусной кислоты, которая в сочетании с кислородом включает элементы: МоаWbAgcIrdXeYf (I), где Х обозначает элементы Nb и V; Y обозначает один или несколько элементов, выбранных из группы, включающей Cr, Mn, Ta, Ti, B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Cu, Au, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re и Pd; a, b, c, d, e и f указывают такие грамм-атомные соотношения элементов, при которых 0<a1,0b<1 и (а+b)=1; 0<(с+d)0,1; 0<е2 и 0f2

Изобретение относится к получению уксусной кислоты

Изобретение относится к получению уксусной кислоты

Изобретение относится к новому способу селективного получения уксусной кислоты и к используемому в нем катализатору

Изобретение относится к получению уксусной кислоты

Изобретение относится к получению уксусной кислоты

Изобретение относится к получению уксусной кислоты

Изобретение относится к получению уксусной кислоты
Изобретение относится к способам получения этилового спирта и уксусной кислоты или их смеси, которые могут быть использованы во многих отраслях народного хозяйства
Изобретение относится к промежуточным стадиям получения адипиновой кислоты, которая является одним из компонентов при получении полиамида
Изобретение относится к гидроксикарбонилированию пентеновых кислот путем ее взаимодействия с водой и монооксидом углерода в присутствии иридиевого и/или родиевого катализатора, йодированного или бромированного промотора, а также в присутствии дикарбоновых кислот с С4-С20 атомами углерода в количестве не более 200 грамм на килограмм реакционной смеси, при этом используют по крайней мере часть пентеновых кислот, катализатор и промотор, использованные в предыдущем гидроксикарбонилировании
Изобретение относится к получению раствора на основе иридия, а также к применению его в качестве катализатора
Изобретение относится к получению раствора на основе иридия, а также к его использованию в качестве катализатора

Изобретение относится к способу получения пропионовой кислоты путем гидроксикарбонилирования этилена моноксидом углерода в среде воды и органической каробоновой кислоты С2-С4

Изобретение относится к усовершенствованному способу получения янтарной кислоты или ее солей, которые находят широкое применение в производстве лекарственных средств, пищевых добавок, пластмасс, эластомеров, фотоматериалов
Изобретение относится к способу каталитического гидроксикарбонилирования пентеновых кислот до адипиновой кислоты

Изобретение относится к очистке карбоновых кислот и/или их ангидридов, в частности к удалению примесей иодидов из уксусной кислоты и/или уксусного ангидрида, получаемых жидкофазным карбонилированием соответствующего сырья, выбранного из группы, включающей метанол, диэтиловый эфир, метилацетат или их смеси

Изобретение относится к получению уксусной кислоты
Наверх