Способ получения капсулированных в полимерной пленке жидкокристаллических композиций

 

Изобретение относится к капсулированию в полимерных пленках, конкретно к способу получения полимеркапсулированных жидкокристаллических композиций, которые могут быть использованы в оптоэлектронике, молекулярной электронике, катализе, медицине, химической сенсорике и т.д. Предлагаемый способ состоит в том, что на охлажденную поверхность последовательно конденсируют в вакууме пары параксилиленового мономера, жидкого кристалла и пары параксилиленового мономера с последующей полимеризацией образца при температуре до 130К или УФ-облучении, причем вместе с парами жидкого кристалла конденсируют пары переходных или непереходных металлов I-IV групп Периодической системы элементов, при давлении паров металла 10-4-10-2 мм рт.ст. Получаемые пленки обладают высокой стабильностью, не меняют своих характеристик в течение нескольких месяцев. Содержание металла в жидкокристаллическом компоненте можно варьировать от 0,1 до 10 вес.%. На примере пленки с капсулированной композицией серебро - жидкий кристалл показана повышенная чувствительность к воздействию электрического поля по сравнению с аналогичной пленкой, не содержащей металла. 1 табл.

Изобретение относится к капсулированию в полимерных пленках, конкретно к способу получения полимеркапсулированных жидкокристаллических композиций, которые могут быть использованы в оптоэлектронике в качестве активных элементов для устройств управляемого светорассеяния, для термической записи и обработки оптической информации, термографической диагностике, молекулярной электронике, катализе, технике СВЧ, химической сенсорике и т.д.

Известен способ капсулирования в полимерных пленках жидкокристаллических веществ и композиций на их основе, состоящий в следущем [Патент США 3872050, кл. 524-774, 1975]. Пленкообразующий полимер (полиуретан) растворяют в таких растворителях, которые могут быть достаточно легко удалены из пленки после формования. Затем получают эмульсию жидкого кристалла в растворе полимера, композицию формуют и удаляют растворитель. Возможно также получение эмульсии жидкокристаллических материалов в полиуретановом эластомере с последущей деполимеризацией системы. Процесс проводят при комнатной или повышенной (до 50oС) температурах в жидкой фазе в условиях интенсивного диффузионного массообмена между материалом жидкого кристалла и полимера. Дополнительным требованием к растворителю является его химическая инертность, а к материалу полимера его хорошая растворимость в используемом растворителе и плохая в материале жидкого кристалла и хорошие изолирующие свойства. При этом происходит загрязнение жидкого кристалла веществом полимера и пластификация полимерного материала жидкокристаллическими компонентами. Все вышеперечисленное делает этот способ неэкологичным.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ [Патент Российской Федерации 2073060], состоящий в следущем. Тонкий слой жидкокристаллического компонента вводят в полимерный материал путем последовательной вакуумной низкотемпературной конденсации паров ксилиленового мономера, жидкого кристалла и еще раз ксилиленого мономера на охлажденную до 77-95К медную или стеклянную поверхность в отсутствии растворителей. Таким образом получают образец в виде трехслойного пакета "мономер- жидкий кристалл-мономер". Параксилилен полимеризуют в твердой фазе при разогреве при низких (110-130К) температурах или УФ-облучением. Способ позволяет получать однородные пленки с регулируемой толщиной слоев. Жидкий кристалл, капсулированный в пленке, отличается высокой чистотой.

Данный способ, однако, имеет ограничения, связанные с тем, что полимерная пленка оказывает неконтролируемое ориентирующее действие на капсулированный внутри ее жидкий кристалл. В связи с этим резко ограничиваются возможности управления структурой жидкого кристалла воздействием внешних физических полей - электрического и магнитного, с чем связанa большая часть практических применений жидких кристаллов. Поэтому, несмотря на целый ряд преимуществ по сравнению с традиционными жидкокристаллическими "сэндвичами", в которых слой жидкого кристалла заключен между двумя стеклами, полимеркапсулированные жидкие кристаллы не нашли до сих пор практического применения.

Задачей предложенного способа является получение капсулированных в полимерной пленке жидких кристаллов, обладающих повышенным откликом на воздействие электрических и магнитных полей.

Поставленная задача решается предложенным способом, состоящим в последовательной конденсации на охлажденную поверхность в вакууме паров параксилиленового мономера, паров жидкогокристалла и паров параксилиленового мономера с последующей полимеризацией при низких температурах до 130К или УФ-облучении, причем пары жидкого кристалла используют вместе с парами переходного или непереходного металла I-IV групп Периодической системы элементов, и конденсацию ведут при давлении паров металла 10-4-10-2 мм рт. ст. На охлажденную поверхность последовательно конденсируют в вакууме пары ксилиленового мономера, композиции жидкий кристалл - металл и пары параксилиленового мономера с последующей полимеризацией образца при нагревании или УФ-облучении, причем совместно с парами жидкого кристалла конденсируют пары металлов (переходных и непереходных), выбранных из I-IV групп Периодической системы элементов, при давлении паров металла 10-4-10-2 мм рт.ст.

Для осуществления способа использовали низкотемпературный криостат, соединенный с вакуумной установкой. Остаточное давление в системе не должно превышать 10-4 мм рт.ст. Жидкий кристалл испаряли из ампулы из тугоплавкого стекла, нагреваемой электронагревательным резистивным элементом, температуру ампулы контролировали термопарой хромель-копель, вмонтированной в нагреватель. Металл испаряли из кварцевой или керамической ампулы, нагреваемой высокотемпературной электрической печкой. Температуру ампулы контролировали при помощи термопар хромель-алюмель или платина-платинородий, помещенных внутрь печки. Ксилиленовый мономер получали при испарении и пиролизе парадиксилилена или соответствующих производных. Конденсацию паров всех компонентов проводили на охлажденную до 77-96К стеклянную или отполированную медную поверхность. Температуру образца контролировали при помощи термопары медь-константан, закрепленной на поверхности.

Содержание металла в жидком кристалле зависит от соотношения потоков молекул жидкого кристалла и металла к охлаждаемой поверхности. Для получения пленок толщиной в десять микрон за час (технологически приемлемые параметры), скорость осаждения жидкого кристалла должна составлять 6,71014 молекул на квадратный сантиметр за секунду. Для получения заметного содержания металла (на уровне 0,1% по массе от массы жидкого кристалла) давление паров металла должно быть выше чем 10-4 мм рт.ст. При давлении, превышающем 10-2 мм рт. ст., содержание металла в жидком кристалле будет превышать 10% по массе. В этом случае избыточное содержание металла будет нарушать жидкокристаллическое упорядочение. Таким образом, для осуществления способа, давление паров металла должно варьироваться в пределах 10-2-10-4 мм рт.ст.

Предложенный способ иллюстрируется следущими примерами.

Пример 1. Нематический жидкий кристалл 4-н-амил-4'-цианобифенил в смеси с серебром, капсулированный в полипараксилиленовом материале.

Тонкий слой композиции 4-н-амил-4'-цианобифенила с серебром толщиной в 10 мкм, капсулированной в полимерную пленку полипараксилилена, получали последовательной конденсацией в вакууме (остаточное давление в системе составляло 510-5 мм рт.ст.) паров параксилиленового мономера, металла и жидкого кристалла и вновь ксилиленового мономера на охлаждаемую жидким азотом медную поверхность реактора (температура подложки, которую в ходе опыта контролировали медь-константановой термопарой, составляла 80+3К). Пары параксилиленового мономера получали резистивным испарением при 420-430К, последущий пиролиз вели при 823К. Время конденсации составляло 10 мин.

Композицию жидкий кристалл - серебро получали совместной вакуумной конденсацией. Пары жидкого кристалла получали путем резистивного испарения при температуре 343К. Пары серебра получали путем резистивного разогрева металла до температуры, при которой давление паров составляло 110-3 мм рт. ст. (12505 К). Время конденсации композиции серебро-жидкий кристалл составляло 90 мин.

Второй слой ксилиленового мономера конденсировали тем же способом, что и первый. Полученный таким образом трехслойный образец полимеризовали при разогреве системы до 130К. Затем криостат разогревали до комнатной температуры и отделяли от поверхности реактора полимерную полипараксилиленовую пленку, включающую 10 мас.% нематического жидкого кристалла 4-н-амил-4'-цианобифенила и 1% серебра от массы жидкого кристалла.

Пример 2. Аналогичен примеру 1, но конденсацию серебра вели при температуре, при которой давление паров металла составляло 110-2 мм рт.ст. (13805К). Получили образец, содержащий 10 вес.% серебра от массы жидкого кристалла. Температура полимеризации образца составила 110К.

Пример 3. Аналогичен примеру 1, но конденсацию серебра вели при температуре, при которой давление паров металла составляло 110-4 мм рт.ст. (11305К). Получили образец, содержащий 0,1 вес.% серебра от массы жидкого кристалла. Температура полимеризации образца составила 150К.

Пример 4. В качестве жидкого кристалла использовали 4-н-октил-4'-цианобифенил, образующий наряду с нематической и смектическую мезофазу. Остальные условия те же, что и в примере 1. Полимеризацию вели при УФ облучении.

Пример 5. Аналогичен примеру 1, но в качестве жидкого кристалла использовали нематический жидкий кристалл класса эфиров паразамещенных бензойных кислот 4-гептилоксифениловый эфир парабутилбензойной кислоты.

Пример 6. В качестве металла использовали медь. Конденсацию меди вели при температуре, при которой давление паров металла составляло 110-3 мм рт. ст. (13905 К). Остальные условия те же, что в примере 1.

Пример 7. В качестве металла использовали металл 4а группы свинец. Остальные условия те же, что в примере 1.

Условия опытов и параметры получающихся пленок приведены в таблице.

Состояние металла в пленках при комнатной температуре контролировали методом просвечивающей электронной микроскопии. Показано, что серебро стабилизируется в жидкокристаллической фазе как в виде сферических частиц диаметром 20-30 нм, так и в виде стержнеобразных частиц, имеющих в поперечнике 20-30, а в длину 150-200 нм. Пленки отличаются стабильностью и не меняли своих характеристик в течение нескольких месяцев.

Для испытания пленки зажимали внутрь двух стекол, на которые были нанесены прозрачные электроды из SnO2. "Сэндвич" помещали внутрь фотоколориметра "Specol-20" таким образом, чтобы зондирующий луч фотоколориметра проходил через полимерную пленку по нормали к ее поверхности. На электроды от источника постоянного питания подавали постоянное напряжение в 5 В и фиксировали изменение эффективной оптической плотности "сэндвича". Для испытаний использовали две пленки. Первую получали так, как описано в примере 1, - эта пленка содержала серебро в количестве одного вес. процента. Вторую получали аналогично первой, но она не содержала серебра. Зафиксировано, что при подаче напряжения эффективная оптическая плотность "сэндвича" с первой пленкой уменьшилась на 0,15 единиц, в то время как оптическая плотность "сэндвича" со второй пленкой практически не изменилась. Таким образом показано, что предложенное решение позволяет решить поставленную задачу.

Ввод металла диспергированного на наноуровне в жидкокристаллическую фазу позволяет получить новый материал, отличающийся по свойствам как от материала, содержащего жидкий кристалл, так и других известных материалов, содержащих нандиспергированные металлы. Наноразмерные частицы металлов обладают принципиально иной по сравнению с компактными металлами электронной структурой, с чем связаны уникальные оптические, каталитические, сенсорные и многие другие свойства подобных материалов. Поэтому получаемые вышеописанным способом гибридные наноматериалы могут найти практическое применение в таких областях как оптоэлектроника в качестве активных элементов для устройств управляемого светорассеяния, для термической записи и обработки оптической информации, термографической диагностике, молекулярной электронике, катализе, технике СВЧ, химической сенсорике и т.д.

Формула изобретения

Способ получения капсулированных в полимерной пленке жидкокристаллических композиций путем последовательной конденсации на охлаждаемую поверхность в вакууме паров параксилиленового мономера, паров жидкого кристалла и паров параксилиленового мономера с последующей полимеризацией образца при температуре до 130 К или УФ-облучении, отличающийся тем, что пары жидкого кристалла используют вместе с парами переходного или непереходного металла 1-IV групп Периодической системы элементов и конденсацию ведут при давлении паров металла 10-4-10-2 мм рт. ст.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способу получения полимер-капсулированных жидких кристаллов, которые могут быть использованы в оптоэлектронике в качестве активных элементов для устройств управляемого светорассеяния, термической записи и обработки оптической информации, термографической диагностики

Изобретение относится к оптически активным соединениям в качестве компонентов сегнетоэлектрических жидкокристаллических материалов (ЖКМ) для устройств регистрации оптического отображения информации и модуляции излучений

Изобретение относится к производным этана ф-лы где при т 0; 1 1 А.В - 1,4-фенилен; R - Н-алкил-С2 Сю или А -1,4-трансциклогексан, В-1,4-фенилен; R-н-алкил С2, С4, Cs- С, Сю, или А- 1,4-бицикло 2,2.2 октан; В - 1,4-фенилен; R - , н - CsHu, или при , (0 А - 1,4-фенилен; В-1,4-трансциклогексан; R-H-Ci,Cg, или А-1,4-бицикло-(2.2.2) октан; В-1,4-фенилен; R - н-СеНтз, или при т 0; НО А - 1,4-бицикло 2.2.2 октан; R - , н - CeHi3, которые могут быть использованы в качестве компонентов жидкокристаллического материала для электрооптических устройств

Изобретение относится к способам капсулирования твердых тел и может быть использовано в строительной, химической, фармацевтической, пищевой и других отраслях промышленности
Изобретение относится к способу капсулирования пестицида

Изобретение относится к микрокапсулам, содержащим бораты щелочных металлов, способу получению их, а также к смазочным маслам, используемым в качестве трансмиссионных смазочных материалов, содержащих указанные микрокапсулы в качестве противозадирных и/или противоизносных присадок. Микрокапсулы включают ядро, содержащее один или более из боратов щелочных металлов, возможно гидратированных, диспергированных в одном или более базовых смазочных маслах минерального, синтетического или природного происхождения; и полимерную оболочку. Микрокапсулы получают методом поверхностной полимеризации. Изобретение позволяет получить микрокапсулы, содержащие бораты щелочных металлов, которые позволяют избежать явления кристаллизации боратов щелочных металлов в присутствии воды, а следовательно, позволяет использовать смазочную композицию, содержащую их, использовать, например, в коробке передач, не имеющей системы герметизации. 5 н. и 19 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к частицам для доставки и способу обработки и/или очистки места применения. Композиция содержит: a) вспомогательный ингредиент, выбранный из группы, b) популяцию частиц микрокапсул, содержащих растворимый или диспергируемый в масле материал сердцевины и не-анионный материал стенки, по меньшей мере частично окружающей материал сердцевины, причем материал стенки микрокапсулы содержит: продукт реакции первой композиции в присутствии второй композиции, содержащей эмульгатор, представляющий собой не-анионное соединение, причем первая композиция содержит продукт реакции i) растворимого или диспергируемого в масле аминакрилата или аминметакрилата с ii) многофункциональным акрилатным или метакрилатным мономером или олигомером и iii) растворимой кислотой и инициатором, где растворимая кислота и аминакрилат находятся в молярном соотношении от 3:1 до 1:3 и вместе составляют от 0,1 до 20 весовых процентов от веса материала стенки, неанионный эмульгатор содержит растворимый или диспергируемый в воде материал при pH от 4 до 12 и, необязательно, инициатор водной фазы, причем продукт реакции первой композиции и второй композиции приводит к образованию популяции микрокапсул, имеющих не-анионный материал стенки микрокапсулы с низкой проницаемостью для материала сердцевины и характеризующихся величиной дзета-потенциала, равной -5 милливольт или больше, полученные микрокапсулы характеризуются адгезией к анионным поверхностям, при этом указанная композиция представляет собой потребительский продукт. Технический результат - получение компоциций с дополнительными возможностями доставки ароматизаторов. 3 н. и 21 з.п. ф-лы, 24 табл., 38 пр.

Изобретение касается композиции для личной гигиены, содержащей микрокапсулы, а также к способам изготовления и использования таких композиций. Композиция содержит вспомогательный ингредиент и популяцию частиц в виде микрокапсул с низкой проницаемостью. При этом микрокапсула содержит растворимый или диспергируемый в масле материал сердцевины и материал стенки, по меньшей мере частично окружающий материал сердцевины. Материал сердцевины микрокапсул содержит материал, выбранный из группы, состоящей из красителя, ароматизатора, вкусового вещества, подсластителя, масла, гербицида, удобрения, материала с легким переходом одной фазы в другую и адгезива и модификатора распределения, где модификатор распределения представляет собой изопропилмиристат. Материал стенки микрокапсулы содержит продукт реакции первой композиции в присутствии второй композиции, содержащей анионный эмульгатор и воду, где первая композиция содержит продукт реакции растворимого или диспергируемого в масле амина, представляющего собой аминоалкилакрилат или аминоалкилметакрилат, с многофункциональным акрилатным или метакрилатным мономером или олигомером, маслорастворимой кислотой и инициатором, а анионный эмульгатор содержит водорастворимый или вододиспергируемый сополимер акриловой кислоты и эфира акриловой кислоты, щелочь и щелочную соль и, необязательно, инициатор водной фазы. По меньшей мере 75% от числа микрокапсул характеризуется прочностью при разрушении от примерно 0,2 МПа до примерно 30 МПа. Описан также способ изготовления композиции для личной гигиены и способ обработки и/или очистки места применения. Технический результат - уменьшенная утечка материала сердцевины микрокапсул в композициях для личной гигиены при использовании в качестве модификатора распределения изопропилмиристата. 3 н. и 15 з.п. ф-лы, 38 табл., 35 пр.

Изобретение относится к композициям, представляющим собой потребительский товар, выбранный из продукта для личной гигиены, чистящего средства, моющего средства, средства по уходу за тканью. Композиция содержит вспомогательный ингредиент и в пересчете на общий вес композиции от 0,1 до 50% частиц, имеющих размер от 2 до 80 мкм. Частица содержит сердцевину, содержащую ароматизатор и модификатор распределения, выбранный из группы, состоящей из маслорастворимых материалов, имеющих величину ClogP более 4, и/или модификатора плотности, где модификатор распределения выбран из группы, состоящей из изопропилмиристата и касторового масла, и оболочку, инкапсулирующую указанную сердцевину, причем указанная оболочка содержит в пересчете на общий вес оболочки от 50 до 100% полиакрилата. Описан также способ изготовления композиции, способ обработки места применения и место применения, выбранное из группы, состоящей из бумажных изделий, тканей, предметов одежды, твердых поверхностей, волос и кожи, обработанное указанной композицией. Технический результат - обеспечение требуемого профиля безопасности в сочетании с соответствующими диапазонами значений проницаемости и хрупкости, а также способность инкапсулировать широкий спектр агентов, обеспечивающих полезный эффект. 4 н. и 19 з.п. ф-лы, 40 табл., 35 пр.

Изобретение относится к композиции, представляющей собой потребительский товар, выбранный из продукта для личной гигиены, чистящего продукта, моющего продукта, продукта для ухода за тканью. Композиция содержит вспомогательный ингредиент и популяцию частиц в виде микрокапсул с низкой проницаемостью, содержащих растворимый или диспергируемый в масле материал сердцевины и материал стенки, по меньшей мере частично окружающий материал сердцевины. Материал стенки содержит множество аминовых мономеров, выбранных из группы аминоалкилакрилатов, аминоалкилметакрилатов и их комбинаций, и множество многофункциональных мономеров или олигомеров, выбранных из группы, состоящей из виниловых мономеров, виниловых олигомеров и их комбинаций. Технический результат – обеспечение низкой утечки материала сердцевины микрокапсул в составе композиции потребительского товара, в частности, в составе несмываемого кондиционера показатели утечки составляют 20 и 45% в течение 1 недели при температуре 40°С. 14 з.п. ф-лы, 37 табл., 35 пр.

Изобретение относится к системе носителя для отдушки, к ее получению и к применению системы носителя в составах для стирки и косметических составах. Соответственно, настоящее изобретение относится к микрокапсуле, включающей ядро из гидрофобного материала, содержащее по меньшей мере одну отдушку, или душистое вещество, и оболочку микрокапсулы, получаемую путем суспензионной полимеризации следующих мономеров: (a) одного или более С1-С24-алкиловых сложных эфиров (мет)акриловой кислоты (мономер А), (b) одного или более би- или полифункциональных мономеров (мономер В) и (c) необязательно одного или более других этиленненасыщенных мономеров (мономер С). При этом скорость сдвига для получения эмульсии находится в диапазоне от 150 до 500 об/мин и длительность перемешивания для получения эмульсии находится в диапазоне от 15 до 180 мин и для получения эмульсии применяется перемешивающая лопасть якорного типа или смеситель MIG©, а средний диаметр микрокапсул находится в диапазоне от 10 до 60 мкм. Описан также способ получения микрокапсул, композиции для ухода за тканью или бытового применения, а также применение микрокапсул в составе для стирки или в косметическом составе. Технический результат - обеспечение микрокапсул со средним диаметром 10-60 мкм с низким значением параметра потери отдушки. 7 н. и 11 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к системе носителя для отдушки, к ее получению и к применению системы носителя в составах для стирки и косметических составах. Соответственно, настоящее изобретение относится к микрокапсуле, включающей ядро из гидрофобного материала, содержащее по меньшей мере одну отдушку, или душистое вещество, и оболочку микрокапсулы, получаемую путем суспензионной полимеризации следующих мономеров: (a) одного или более С1-С24-алкиловых сложных эфиров (мет)акриловой кислоты (мономер А), (b) одного или более би- или полифункциональных мономеров (мономер В) и (c) необязательно одного или более других этиленненасыщенных мономеров (мономер С). При этом скорость сдвига для получения эмульсии находится в диапазоне от 150 до 500 об/мин и длительность перемешивания для получения эмульсии находится в диапазоне от 15 до 180 мин и для получения эмульсии применяется перемешивающая лопасть якорного типа или смеситель MIG©, а средний диаметр микрокапсул находится в диапазоне от 10 до 60 мкм. Описан также способ получения микрокапсул, композиции для ухода за тканью или бытового применения, а также применение микрокапсул в составе для стирки или в косметическом составе. Технический результат - обеспечение микрокапсул со средним диаметром 10-60 мкм с низким значением параметра потери отдушки. 7 н. и 11 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к получению жидкокристаллических пленок и покрытий из замещенных полипараксилиленов, используемых в качестве ориентирующих слоев в различных электрооптических устройствах (буквенно-цифровые индикаторы, ЖК дисплеи, оптические затворы и т.п)

Изобретение к соединению. В формуле (I) Alk представляет собой алкильный заместитель: С4Н9, С6Н13, C10H21, С15Н31; R1 представляет собой заместители, выбранные из группы: арильные - фенил, 4-СН3С6Н4, 3-СН3С6Н4, 2-СН3С6Н4, 4-ClC6H4, 4-FC6H4, 2-FC6H4, 4-СН3ОС6Н4, 4-i-PrC6H4, 4-i-BuC6H4, 4-(н-С8Н17)С6Н4, 2-нафтил; Х представляет собой кислород или серу, n=0, 1 или 2, CHnCFn представляет из себя фрагмент: при n=2 CH2-CF2, при n=1 CH=CF, при n=0 С≡С. Также изобретение относится к способу получения соединений. Указанные соединения являются термотропными жидкими кристаллами. 2 н. и 1 з.п. ф-лы, 5 табл., 18 пр.
Наверх