Способ определения гексана в воздухе

Авторы патента:


 

Изобретение относится к аналитической химии органических соединений и может быть применено для детектирования гексана в воздухе рабочей зоны предприятий нефтеперерабатывающей, шинной, обувной, текстильной, кожевенной и мебельной промышленности, а также при производстве растительных масел. В способе определения гексана в воздухе, включающем подготовку пробы, детектирование гексана пьезокварцевым сенсором на основе объемно-акустических волн, модифицированным активным сорбентом, ввод равновесной газовой фазы анализируемой пробы в ячейку детектирования, регистрацию аналитического сигнала сенсора, в качестве модификатора сенсора используют сквалан в диапазоне масс 10-18 мкг. Достигается повышение чувствительности анализа. 2 табл.

Изобретение относится к аналитической химии органических соединений и может быть применено для детектирования гексана в воздухе рабочей зоны предприятий нефтеперерабатывающей, шинной, обувной, текстильной, кожевенной и мебельной промышленности, а также при производстве растительных масел.

Наиболее близким по технической сущности и достигаемому эффекту является способ определения углеводородов в воздухе с применением пьезокварцевого сенсора, модифицированного политриметилсилилстиролом [Гречников А.А. Пьезорезонансное определение аммиака, несимметричного диметилгидразина и углеводородов в воздухе. Автореферат...канд. хим. наук. - М., 2000. - 24 с.].

Недостатком прототипа является невысокая чувствительность определения гексана в воздухе.

Технической задачей изобретения является повышение чувствительности анализа.

Поставленная задача достигается тем, что в способе определения гексана в воздухе, включающем подготовку пробы, детектирование гексана пьезокварцевым сенсором на основе объемно-акустических волн, модифицированным активным сорбентом, ввод равновесной газовой фазы анализируемой пробы в ячейку детектирования, регистрацию аналитического сигнала сенсора, новым является то, что в качестве модификатора сенсора используют сквалан в диапазоне масс 10-18 мкг.

Технический результат заключается в повышении чувствительности анализа.

Предельно допустимая концентрация гексана в воздухе рабочей зоны составляет 300 мг/м3.

Способ осуществляется по следующей методике.

Пробоотбор. Анализируемый воздух предварительно пропускали через концентратор, содержащий фосфорную кислоту, и через ацетат свинца для удаления аминов, третичных спиртов, эпоксидов, карбоновых кислот и органических соединений серы, очищенный таким образом воздух собирали в газовую пипетку или стеклянный шприц вместимостью 100-150 см3. Пробы воздуха для анализа отбирали из газовой пипетки или стеклянного шприца в малые медицинские цельностеклянные или комбинированные шприцы со стеклянным поршнем путем прокола резиновой прокладки стеклянной заглушки и вводили в ячейку детектирования, содержащую пьезокварцевый сенсор на объемных акустических волнах.

Модификация сенсора. В качестве модификатора электродов пьезокварцевого сенсора применяли сквалан, используемый в газовой хроматографии для определения углеводородов.

Ход определения. Электроды пьезокварцевого сенсора на основе обьемно-акустических волн с собственной частотой колебаний 8-10 МГц модифицировали равномерным нанесением растворов сквалана определенного объема с помощью хроматографического микрошприца так, чтобы после удаления растворителя масса пленки сорбента составляла 10-18 мкг, затем сенсор сушат и стабилизируют в течение 5-10 мин.

В реакционную емкость термостатируемой ячейки детектирования помещали предварительно подготовленный пьезокварцевый сенсор на объемно-акустических волнах. Перед началом работы в "рубашку" ячейки детектирования через патрубки из термостата подавали воду для вывода температуры ячейки на заданный уровень. Затем пьезокварцевый сенсор выдерживали в потоке осушенного лабораторного воздуха несколько минут до получения стабильного аналитического сигнала и измеряли показания сенсора. Градуировочный график представляет собой зависимость частоты колебаний пьезокварцевого сенсора от объема пробы воздуха, введенного в ячейку детектирования. Микрошприцем отбирали пробу анализируемого воздуха и через патрубок ввода, снабженный силиконовой прокладкой, вводили непосредственно в реакционную емкость ячейки. Секундомером отсчитывали время, в течение которого сигнал пьезокварцевого сенсора не изменялся. Разность между сигналами пьезосенсора до и после ввода пробы служил характеристикой количественных определений. Для удаления пробы из реакционной емкости и регенерации пьезокварцевого сенсора выходной патрубок открывали и подавали осушенный лабораторный воздух до выхода сигнала сенсора на начальный уровень (до ввода пробы). После этого в ячейке проводили следующее измерение.

Фиксирование отклика сенсора. Снижение рабочей частоты колебаний пьезокварцевых сенсоров на объемно-акустических волнах рассчитывали по уравнению Зауэрбрея [Sauerbrey G.G. Messung von plattenschwingungen sehr kleiner amplitude durch lichtstrom-modulation//Z. Phys. - 1964. - Bd. 178. - S. 457 -471]: f = -2,310-6f2Om/A, где f - изменение частоты резонатора; m - масса модификатора, г; f0 - резонансная частота пьезосенсора, МГц, Гц; А - площадь поверхности модификатора, см2.

После введения каждой пробы в ячейку детектирования фиксировали резонансную частоту колебаний пьезокварцевого сенсора и вычисляли относительный сдвиг частоты fa по уравнению: fa = f0 - f1, где f0 и f1 - частоты колебаний сенсора до и после анализа, Гц.

Результаты сравнения характеристик предлагаемого способа и прототипа представлены в табл. 2.

Примеры осуществления способа Пример 1.

На электродах пьезокварцевого сенсора на основе объемно-акустических волн формировали пленку из раствора сквалана с концентрацией 1 мг/см3 массой 3 мкг. Сенсор помещали в ячейку детектирования, выдерживали в потоке осушенного лабораторного воздуха до получения стабильного аналитического сигнала, затем измеряли показания. Микрошприцем отбирали пробу и через патрубок ввода, снабженный силиконовой прокладкой, вводили непосредственно в реакционную емкость ячейки. Секундомером отсчитывали время, в течение которого сигнал пьезокварцевого сенсора не изменялся. Разность между сигналами пьезосенсора до и после ввода пробы служит характеристикой количественных определений. Способ осуществим. Результаты определения гексана предлагаемым способом приведены в табл.1.

Предел обнаружения гексана 0,5 ПДК, уровень шумов 70 Гц.

Пример 2.

Подготовку сенсора проводили по аналогии с примером 1. На электродах сенсора формировали пленку сквалана массой 5 мкг. Затем анализировали пробу воздуха. Способ неосуществим. Результаты определения гексана предлагаемым способом приведены в табл.1.

Пример 3.

Подготовку сенсора проводили по аналогии с примером 1. На электродах сенсора формировали пленку сквалана массой 8 мкг. Затем анализировали пробу воздуха. Способ осуществим. Результаты определения гексана предлагаемым способом приведены в табл.1.

Предел обнаружения гексана 0,25 ПДК, уровень шумов 40 Гц.

Пример 4.

Подготовку сенсора проводили по аналогии с примером 1. На электродах сенсора формировали пленку сквалана массой 12 мкг. Затем анализировали пробу воздуха. Способ осуществим. Результаты определения гексана предлагаемым способом приведены в табл.1.

Предел обнаружения гексана 0,3 ПДК, уровень шумов 30 Гц.

Пример 5.

Подготовку сенсора проводили по аналогии с примером 1. На электродах сенсора формировали пленку сквалана массой 15 мкг. Затем анализировали пробу воздуха. Способ осуществим. Результаты определения гексана предлагаемым способом приведены в табл. 1.

Предел обнаружения гексана 0,5 ПДК, уровень шумов 50 Гц.

Пример 6.

Подготовку сенсора проводили по аналогии с примером 1. На электродах сенсора формировали пленку сквалана массой 18 мкг. Затем анализировали пробу воздуха. Способ осуществим. Результаты определения гексана предлагаемым способом приведены в табл.1.

Пример 7.

Подготовку сенсора проводили по аналогии с примером 1. На электродах сенсора формировали пленку сквалана массой 20 мкг. Затем анализировали пробу воздуха. Способ неосуществим, так как наблюдается срыв генерации колебаний пьезосенсора.

Предел обнаружения гексана 0,75 ПДК, уровень шумов 80 Гц.

Из примеров 1-7 и табл.1 следует, что наибольший эффект по предлагаемому способу определения гексана в воздухе, включающему пробоотбор и детектирование, достигается с применением сенсора на основе объемно-акустических волн, модифицированного пленкой сквалана массой 8 мкг (пример 3). При уменьшении (пример 1, 2) и увеличение (примеры 4-6) массы пленки сквалана на электродах чувствительность пьезосенсоров снижается и повышается предел обнаружения гексана или наблюдается срыв генерации колебаний пьезосенсора (пример 7).

Таким образом, предлагаемый способ определения гексана в воздухе по сравнению с прототипом позволяет определять гексан в воздухе при концентрациях на уровне 0, 25 ПДК и выше.

Формула изобретения

Способ определения гексана в воздухе, включающий подготовку пробы, детектирование гексана пьезокварцевым сенсором на основе объемно-акустических волн, модифицированным активным сорбентом, ввод равновесной газовой фазы анализируемой пробы в ячейку детектирования, регистрацию аналитического сигнала сенсора, отличающийся тем, что в качестве модификатора сенсора используют сквалан в диапазоне масс 10-18 мкг.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области аналитической химии, а именно исследованию способов извлечения, приемов стабилизации проб почвы, зараженных микроколичествами пинаколинового эфира фторангидрида метилфосфоновой кислоты, и последующего биохимического анализа

Изобретение относится к области обеспечения аналитического контроля содержания общей серы в органических материалах, преимущественно в талловой канифоли, в т

Изобретение относится к индикатору для применения в процессе стерилизации паром медицинского оборудования многоразового использования

Изобретение относится к анализу смазочных масел с щелочными присадками, а именно к определению кондиционности масел

Изобретение относится к аналитической химии органических соединений и может быть использовано для детектирования нитроалканов C1-С3 в воздухе рабочей зоны предприятий производства нитролаков, фармацевтической и парфюмерной промышленности в способе определения суммарного содержания нитроалканов C1-С3 в воздухе рабочей зоны, включающем отбор и подготовку пробы, определение суммарного содержания нитроалканов C1-С3, новым является то, что для определения нитроалканов C1-С3 применяют пьезокварцевые сенсоры, электроды которых модифицируют водным раствором проксанола 268 в диапазоне масс 5-12 мкг, сушат при 50-60oС, помещают в ячейку, выдерживают в течение 5-10 мин, регистрируют начальную частоту колебаний сенсора и рабочую через 10-30 с после введения пробы

Изобретение относится к аналитической химии органических соединений и может быть использовано для контроля технологических и очищенных сточных вод предприятий по производству синтетических красителей и пестицидов

Изобретение относится к области контроля загрязнений окружающей среды высокотоксичными грибами, в частности грибами бледной поганки Amanita phalloides
Изобретение относится к измерительной и индикаторной технике и может быть использовано как в измерительных устройствах, так и без них, в качестве визуального индикатора для контроля окружающей среды, измерения концентраций и нахождения течей вредных и дорогостоящих газов, контроля герметичности изделий, содержащих вредные химические вещества, и других устройств, применяемых в метрологии, в сельском хозяйстве, различных отраслях промышленности, в научных исследованиях

Изобретение относится к фармацевтической и пищевой промышленности и касается стандартизации пектинов и альгинатов, используемых в качестве детоксикантов тяжелых металлов

Изобретение относится к аналитическому контролю анионных примесей в водном теплоносителе с добавками борной кислоты, реализуемом в АЭС и ЯЭУ с аммиачно-борно-калиевым водно-химическим режимом (ВХР), методом двухколоночной ионной хроматографии с предварительным концентрированном и прямым кондуктометрическим детектированием и позволяет решать задачи оперативного контроля массовых концентраций фторид-, хлорид-, нитрит-, нитрат-, фосфат- и сульфат- ионов

Изобретение относится к хроматографическим методам анализа и может быть использовано в химической промышленности при контроле технологического процесса и качества продукта в производстве технического хлораля

Изобретение относится к аналитической химии пищевых продуктов и может быть применено для идентификации и установления случаев фальсификации кофе

Изобретение относится к устройствам термостатирования разделительных колонок хроматографов

Изобретение относится к области газового анализа и может быть использовано для градуировки газоаналитической аппаратуры

Изобретение относится к области газового анализа и может быть использовано для градуировки газоаналитической аппаратуры

Изобретение относится к области газового анализа и может быть использовано для градуировки газоаналитической аппаратуры

Изобретение относится к измерительной технике, к способам определения состава газовоздушных смесей, может быть использовано для количественного определения газообразного хлористого водорода в окружающем воздухе производственных помещений и рабочих мест в промышленности

Изобретение относится к аналитическому приборостроению и может быть использовано для хроматографического анализа газообразных и жидких веществ при повышенных давлениях в различных отраслях: химической, нефтяной, газовой, нефтехимической, металлургии, медицине, биологии, экологии и др
Наверх