Способ электрохимической обработки

 

Способ может быть использован при чистовой обработке металлических материалов. Обработку выполняют от источника постоянного тока в жидкой токопроводящей рабочей среде с регулированием длительности импульса тока. В качестве жидкой токопроводящей рабочей среды используют реологическую жидкость. Длительность импульса тока регулируют вязкостью рабочей среды. Длительность пауз между импульсами тока регулируют по времени восстановления максимального тока в импульсе. Изобретение позволяет повысить производительность, точность обработки, расширить технологические возможности электрохимического процесса в пульсирующем токе. 2 ил.

Изобретение относится к области машиностроения и может быть использовано при чистовой обработке деталей из металлических материалов.

Известен способ чистовой электрохимической обработки по [1], осуществляемый в пульсирующем потоке жидкой токопроводящей рабочей среды путем программируемого перекрытия межэлектродного зазора электродом-инструментом в период пауз тока. Недостатком способа является нарушение cплошности потока за счет локального перекрытия зазора в месте его наименьшего значения и нарушение точности обработки; сложная система управления движением электродов в направлениях сближения и расхождения, что снижает надежность и повышает затраты на оборудование; накопление продуктов обработки по длине зазора в период рабочего цикла за счет переноса этих продуктов по направлению движения потока, что снижает скорость анодного растворения и приводит к неуправляемому нарушению точности, особенно при значительной длине зазора.

Известен также [2] способ импульсной обработки, осуществляемый на установке с источником постоянного тока и дополнительным электродом-сеткой в рабочем зазоре, на которую подают высоковольтный управляющий импульс, регулирующий время рабочего импульса. Недостатками способа являются: сложность размещения сетки в рабочем зазоре без касания ею электродов; ограничение скорости потока электролита, что снижает производительность, точность, удорожает процесс обработки; необходимость управлять перемещением сетки по мере съема припуска, что резко усложняет оборудование и повышает его стоимость, снижает надежность, а повышенное напряжение на сетке увеличивает опасность поражения током.

Изобретение направлено на повышение производительности, точности обработки, расширение технологических возможностей электрохимического процесса в пульсирующем потоке, упрощение и удешевление оборудования, повышение его надежности и безопасности. Это достигается тем, что обработка выполняется в жидкой токопроводящей реологической рабочей среде, в которой длительность импульса тока регулируется вязкостью рабочей среды, а длительность пауз между импульсами регулируется по времени восстановления максимального тока в импульсе.

На фиг.1 представлена схема электрохимической обработки. Ток от источника 1 через блок 2 задержки пауз поступает на электрод-инструмент 3, противостоящий заготовке, являющейся анодом. Между инструментом 3 и заготовкой 4 через межэлектродный зазор протекает рабочая среда, подаваемая под давлением Рвх. Поддержание межэлектродного зазора осуществляется одной из известных систем 6 регулирования зазоров.

На фиг. 2 показана работа блока 2 задержки пауз. После включения тока его величина быстро нарастает (импульс I), что вызывает появление сильного электромагнитного поля, возрастание вязкости рабочей среды и ее остановку в зазоре, насыщение неподвижной среды продуктами обработки, падение тока до его прекращения. Аппроксимируя нисходящую ветвь импульса тока прямой, установим начало паузы, когда вязкость рабочей среды резко снизится, возобновится движение среды, начнется вынос продуктов обработки и возобновится процесс съема материала с заготовки 4.

После паузы 1 ток снова начнет нарастать, но загрязнение рабочей среды наступит раньше, чем в I импульсе, т.к. рабочая среда не успеет полностью замениться на чистую и часть продуктов обработки останется в ней на последующем импульсе. Максимальный ток в II импульсе будет меньше, чем в I импульсе. Если имеется рассогласование, то время паузы после импульса II увеличивается на величину 1 и далее, после последующих импульсов время пауз суммируется до достижения тока в импульсе не менее тока в I импульсе. Суммарное время пауз 0 задается от блока 2 при дальнейшем протекании процесса. Если максимальный ток в импульсе начинает изменяться, например за счет изменения площади обработки, то в блоке 2 выполняется пропорциональное изменение длительности пауз и происходит регулирование их величины при протекании процесса обработки.

Способ осуществляют следующим образом: устанавливают начальный межэлектродный зазор, подают в зазор между инструментом 3 и заготовкой 4 рабочую среду 5 давлением Рвх, включают источник тока 1, подачу инструмента 3 регулятором 6. Блок 2 определяет (фиг.2) время пауз (0) и поддерживает их величину в течение всего периода обработки.

После включения тока рабочая среда 5 увеличивает вязкость (до 700 раз) и останавливается, процесс анодного растворения идет до насыщения рабочей среды 5 в зазоре продуктами обработки, после чего ток падает, вязкость среды 5 снижается до исходной, начинается движение загрязненной среды 5 в зазоре, замена в течение 0 среды 5 в зазоре, ток включается, происходят последующие импульсы до удаления всего припуска на заготовке 4. Если по мере удаления припуска площадь обработки изменяется, то меняется максимальный ток в импульсе. Блок 2 анализирует изменение этого тока и пропорционально этому меняет длительность пауз.

Для осуществления процесса обработки в пульсирующей реологической среде не требуется сложный, дорогой источник импульсного тока, сложная система регулирования межэлектродного промежутка, упрощается система защиты от коротких замыканий. Устраняются ограничения по площади обработки заготовок, что расширяет технологические возможности процесса. Оптимизируется время рабочего цикла, что повышает производительность процесса. При остановке потока условия анодного растворения выравниваются, что повышает точность обработки.

Пример использования способа. Образец с припуском 1 мм из стали 40 ХНМА длиной 200 мм и шириной 40 мм обрабатывался на станке СЭХО-901 с подачей инструмента по схеме саморегулирования. Источник питания - генератор постоянного тока ВАКР-3200. Рабочая среда - ферромагнитная реологическая жидкость. Насос развивает давление до 0,2 МПа.

Режим обработки: сила тока в импульсе до 1200 А, время рабочего цикла 0,50,7 с, время пауз 0,10,12 с. Общее время удаления припуска 150180 с, что в 2 раза меньше по сравнению с обработкой по схеме с непрерывным потоком и невозможно по схеме с импульсно-циклической обработкой в импульсном потоке. Погрешность формы поверхности и размеров составила 0,05 мм, что 1,8 раза меньше по сравнению с обработкой по схеме с постоянным потоком в обычных электролитах. Визуальное наблюдение потока на выходе из зазора показывало равномерность циклов выхода жидкости по всей ширине образца.

Таким образом достигнуто повышение производительности и точности обработки, расширены технологические возможности процесса электрохимической обработки в пульсирующем потоке, устранены сложные системы в оборудовании, что снизило его стоимость, повысило ресурс и надежность. Реологическая среда не содержит токсичных компонентов и не наносит вреда исполнителям и окружающей среде.

Источники информации 1. А. с. 323243, В 23 Р 1/04. Способ размерной электрохимической обработки / Л.Б.Дмитриев и др. // Бюл. изобр. 1, 1972.

2. А. с. 578178. В 23 Р 1/04. Способ электрохимической обработки / В.П. Смоленцев, З.Б.Садыков // Бюл. изобр. 40, 1977.

Формула изобретения

Способ электрохимической обработки, при котором обработку выполняют от источника постоянного тока в жидкой токопроводящей рабочей среде с регулированием длительности импульса тока, отличающийся тем, что в качестве жидкой токопроводящей рабочей среды используют реологическую жидкость, длительность импульса тока регулируют вязкость рабочей среды и регулируют длительность пауз между импульсами тока по времени восстановления максимального тока в импульсе.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано, в частности, для электрохимической размерной обработки титана и сплавов на его основе с крупнозернистой и ультрамелкозернистой структурой

Изобретение относится к электрохимической рекуперации алмазов и сверхтвердых материалов из отработанного и бракованного инструмента, в частности буровых коронок и долот

Изобретение относится к области машиностроения и может быть использовано для удаления подводных металлических конструкций на морях и водоемах с соленой водой

Изобретение относится к области машиностроения и может быть использовано, в частности, для электрохимической размерной обработки (ЭХРО) железокобальтникелевых сплавов

Изобретение относится к области машиностроения и авиационной промышленности и может быть использовано, в частности, для электрохимической размерной обработки никельхромовых сплавов

Изобретение относится к машиностроению и авиационной промышленности и может быть использовано, в частности, для электрохимической размерной обработки (ЭХРО) жаропрочных никельхромовых сплавов

Изобретение относится к электрохимической обработке металлов и может быть использовано для электрохимического полирования деталей сложной конфигурации из титана и его сплавов, например корпусов искусственных клапанов сердца

Изобретение относится к области машиностроения и может быть использовано, в частности, для электрохимической размерной обработки (ЭХРО) меди и сплавов на ее основе с крупнозернистой и ультрамелкозернистой структурой
Изобретение относится к электрохимическим и электрофизическим способам обработки материалов, а именно - к электролитам для электрохимической обработки острых кромок после слесарной зачистки в изделиях, преимущественно из нержавеющих и жаропрочных сплавов
Изобретение относится к области машиностроения и может быть использовано для электрохимической обработки металлокерамических твердых сплавов с применением импульсного униполярного тока

Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств для управления подачи жидких и газовых сред. В способе безабразивной доводки металлических сопрягаемых поверхностей в начале обработки между сопрягаемыми поверхностями, служащими электродами, устанавливают минимальный зазор по границе начала его пробоя низковольтным током в слабопроводящем электролите с незначительным содержанием металлического наполнителя с размером частиц 8 нм, а далее увеличивают объемное содержание упомянутого металлического наполнителя с одновременным повышением межэлектродного зазора и поддержанием его величины на границе начала пробоя между электродами до стабилизации величины тока, проходящего через электроды. Затем осуществляют вибрацию сопрягаемых поверхностей в направлении друг к другу, плавно увеличивают амплитуду вибраций до стабильного получения пауз тока и продолжают обработку до получения на одной из сопрягаемых поверхностей минимальной стабильной шероховатости, после чего меняют полярность электродов и при таком же режиме обработки формируют шероховатость на другой сопрягаемой поверхности. Техническим результатом изобретения является обеспечение минимальной шероховатости и высокой точности сопряжения поверхностей. 3 ил., 1 пр.

Изобретение относится к электрохимической размерной обработке деталей из металлических материалов. Предложен способ, включающий пропускание рабочей среды на входе в зону обработки через магнитное поле с вектором перемещения наночастиц в сторону, противоположную гравитационным силам, при этом на выходе из зоны обработки рабочую среду с продуктами обработки, образовавшимися в процессе электрохимической размерной обработки, пропускают через магнитное поле с вектором перемещения наночастиц в противоположном направлении. После рабочую среду разделяют на потоки, из которых первый, состоящий из токопроводящей жидкости с продуктами обработки, направляют в устройство для очистки жидкости от продуктов обработки, а второй, содержащий преимущественно наночастицы, направляют в смеситель для получения рабочей среды на базе очищенной жидкости с заданной вязкостью. Также предложено устройство для осуществления данного способа. Изобретение обеспечивает стабилизацию состава и свойств рабочей среды при электрохимической размерной обработке деталей из металлических материалов. 2 н.п. ф-лы, 1 ил., 1 пр.
Наверх