Газоразделительная композитная мембрана и способ её получения

 

Изобретение относится к технологии получения газоразделительных композитных мембран и может найти применение в процессах газоразделения и концентрирования газов, используемых в химической, нефтехимической, медицинской областях промышленности. Мембрана состоит из гидрофобной пористой гибкой подложки, выполненной в виде ультра- или микрофильтрационной фторуглеродной мембраны и скрепленного с ней в процессе формования газоразделительного диффузионного слоя. Подложка выполнена в виде мембраны и имеет размер пор, выбранный из соотношения Dп=(0,05-0,9)Dм, где Dп - размер пор подложки, Dм - размер мицелл рабочего раствора блоксополимера - эквивалентный диаметр. В качестве диффузионного слоя она содержит триметилфенилполисилоксан или диметилдифенилполисилоксан-дифенилполисилсесквиоксановый блоксополимер, имеющий блоки структур 1 и 2. Для получения мембраны готовят рабочий раствор в виде мицеллярной системы самопроизвольным диспергированием блоксополимера-триметилфенилполисилоксана или диметилдифенилполисилоксан-дифенилполисилсесквиоксанового блоксополимера, имеющего блоки структур 1 и 2, путем одновременного смешения блоксополимера с растворителем и нерастворителем при следующем содержании компонентов, мас.ч.: блоксополимер - 2,0-8,0; растворитель - 5,0-40,0; нерастворитель - 30,0-90,0. Или блоксополимер смешивают с фреоном-11 - фтортрихлорметаном в массовом соотношении 1:9-45 и формуют из полученного рабочего раствора по сухому методу газоселективный слой на пористой гидрофобной гибкой подложке, выполненной в виде ультра- или микрофильтрационной фторуглеродной мембраны, имеющей размер пор, указанных выше. Изобретение позволяет получить мембрану с высокими газоселективными свойствами, механической прочностью и надежностью в эксплуатации без потери производительности. 4 з.п.ф-лы, 3 табл., 1 ил.

ОБЛАСТЬ ТЕХНИКИ Изобретение относится к конструкции газоразделительной композитной мембраны и способу ее получения. Такая мембрана нашла применение в процессах газоразделения и концентрирования газов, используемых в химической, нефтехимической и др. отраслях промышленности, а также в медицине, в массообменных процессах жидкость-газ, в том числе при использовании в мембранных оксигенаторах для обогащения крови кислородом. При этом такие показатели газоразделительной мембраны, как селективность, производительность, прочность и надежность являются определяющими, ибо именно эти свойства мембраны обеспечивают ей успех применения в различных процессах газоразделения и ее конкурентоспособность на рынке газоразделительных средств.

Наибольшее развитие получила в этой связи за последние годы т.н. композитная газоразделительная мембрана, которая включает в себя микропористый гидрофобный субстрат-подложку, на которую нанесен непосредственно в процессе формования мембраны газоселективный слой. Благодаря такой конструкции достаточно технологично удается сочетать газоразделительные функции мембраны с необходимым уровнем ее производительности, прочности и надежности. Вместе с тем рынок мембранной техники требует дальнейших решений по миниатюризации газоразделительных средств, понижения их стоимости, доступности, а также повышенной надежности и запасу прочности.

УРОВЕНЬ ТЕХНИКИ Известны различные конструкции газоразделительной композитной мембраны, отличающиеся пористой основой - подложкой и соединенным с этой подложкой газоселективным слоем, выполняемым из различных полимерных материалов (Патент Великобритании 2072047, Патент США 4393113, Авторское свидетельство СССР 1039201, Патенты РФ 2065321 и 2074020).

В качестве пористой основы-подложки в известных решениях используют как микропористые металлы и полимеры, так и более сложные композитные системы типа пропитанных на 60-70% гидрофобным полимером (в частности, сополимеры тетрафторэтилена с винилиденфторидом) нетканого полипропилена и электроизоляционной лавсановой бумаги (Патент РФ 2119817), а также ультра- и микрофильтры (Патенты РФ 2065321 и 2074020).

Недостаточно высокая селективность описанных конструкций газоразделительной мембраны влечет за собой необходимость утолщения их газоселективного слоя, а как следствие идет падение производительности, растут габариты и цена газоразделительных устройств, падает конкурентоспособность.

Известная конструкция композитной мембраны (Патент РФ 2074020), в которой в качестве подложки использован ультра- или микрофильтр, а в качестве диффузионного слоя - полимер ароматический полиамид, не может быть использована для разделения системы газов CO2-O2-N2.

Известны различные способы получения газоразделительных композитных мембран, среди которых т.н. "сухой" метод формования получает интенсивное развитие и для газоселективных мембран на основе различных полимеров, в том числе кремнийорганических (Патенты РФ 2065321 и 2074020).

Известный из указанных изобретений "сухой" метод получения газоразделительных композитных мембран включает в себя четыре основные стадии: 1. получение пористой подложки в виде ультра- или микрофильтра, 2. получение рабочего раствора полимера, в т.ч. кремнийорганического (Патент РФ 2074020), 3. нанесение рабочего раствора на пористую подложку, 4. термообработку системы "пористая подложка-нанесенный рабочий раствор" в условиях свободного испарения легкокипящих компонентов рабочего раствора.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ В основу изобретения положена задача создать газоразделительную композитную мембрану с высокими газоселективными свойствами, механической прочностью и надежностью в эксплуатации без потери производительности.

Эта задача включает в себя частную задачу - создать промышленный, надежно воспроизводимый способ получения газоселективной композитной мембраны на основе кремнийорганического полимера, обладающего высокими газоселективными свойствами в системе газов CO2-O2-N2.

Поставленная задача решается тем, что предлагаемая согласно изобретению конструкция мембраны включает: а) пористую основу - подложку, которая сама выполнена в виде фторуглеродной ультра- или микрофильтрационной мембраны и которая имеет строго определенные показатели по размеру пор. Размер пор выбран из соотношения: Dп= (0,05-0,9)Dм, где Dп - размер пор подложки; Dм - размер мицелл рабочего раствора блоксополимера - эквивалентный диаметр, б) и указанная в п. "а" пористая основа-мембрана покрыта в процессе формования газоразделительной мембраны кремнийорганическим полимером, в качестве которого взят триметилфенилполисилоксан- или диметилдифенилполисилоксан-дифенилполисилсесквиоксан, имеющий блоки структуры:

где R=-СН3 или -С6Н5
а=0,1-0,33
m=55-350
n=5-25

Согласно изобретению заявляемую конструкцию газоразделительной композитной мембраны получают по т.н. "сухому" способу, который включает нижеследующие оригинальные приемы:
а) в качестве блоксополимера для формования газоселективного слоя берут триметилфенилполисилоксан- или диметилдифенилполисилоксан дефинилполисилсесквиоксан, имеющий в своем составе блоки:
где R=-СН3 или -С6Н5
а=0,1-0,33
m=55-350
n=5-25
б) рабочий раствор полимера готовят в виде мицеллярной системы самопроизвольным диспергированием (Общее понятие этого явления дано достаточно подробно, в частности, в книге С.С. Воюцкого "Курс коллоидной химии". - М.: Химия, 1975, с.236-240) указанного блоксополимера при его одновременном смешении с растворителем и нерастворителем или трихлорфторметаном (фреон-11),
в) соотношение компонентов в мицеллярном растворе берут в пределах:
Блоксополимер - 2,0-8,0
Растворитель - 5,0-40,0
Нерастворитель - 30,0-90,0
или
Трихлорфторметан, на 1,0 мас. ч. блоксополимера - 9,0-45,0
г) в качестве пористой подложки, на которой формуют газоселективный слой по "сухому методу", берут фторуглеродную ультра- или микрофильтрационную мембрану, имеющую размер пор, выбранный из соотношения Dп=(0,05-0,9)Dм, где Dп - размер пор подложки; Dм - размер мицелл рабочего раствора блоксополимера - эквивалентный диаметр.

Для повышения скорости формования газоселективного слоя по "сухому методу" мицеллярную систему получают самопроизвольным диспергированием блоксополимера путем его одновременного смешения с растворителем и смесью нерастворителя и ингибитора отверждения блоксополимера, взятых в соотношении, мас.ч. :
Блоксополимер - 2,0-8,0
Растворитель - 5,0-40,0
Нерастворитель - 30,0-90,0
Ингибитор - 3,0-12,0
И затем в полученный таким образом мицеллярный раствор блоксополимера непосредственно перед формованием газоселективного слоя добавляют отверждающую систему.

В качестве растворителя в заявляемом способе берут хлороформ или метиленхлорид. В качестве нерастворителя - гексан или петролейный эфир. В качестве ингибитора - этанол, бутанол, пропанол или изопропанол.

Предпочтительным вариантом реализации заявляемого способа получения газоразделительной мембраны является формование газоселективного слоя по "сухому методу" с помощью наносящего и калибрующего валков, которые частично погружены в ванну с рабочим раствором блоксополимера и которые имеют различную окружную скорость вращения и зазор между собой.

Зазор () между указанными валками устанавливают в пределах от 50 до 120 мкм. Окружная скорость калибрующего валка - в пределах от 1,5 до 2,5 (0,3) м/мин, наносящего валка от 3 до 5 (0,3) м/мин.

Для повышения эксплуатационных свойств газоразделительной композитной мембраны согласно изобретению осуществляют формование газоселективного слоя в несколько этапов, на каждом из которых образуют газоселективный слой из блоксополимера одинакового состава.

Нами найдено, что для производства газоразделительной композитной мембраны с высокими эксплуатационными характеристиками, превосходящими современный уровень техники газоразделения по надежности, воспроизводимости газоразделительных свойств и доступности различным потребителям необходимо получение рабочего раствора указанного нами блоксополимера проводить путем т. н. "самопроизвольного диспергирования" этого блоксополимера в дисперсионной среде. Реализацию самопроизвольного диспергирования предложенного блоксополимера согласно изобретению осуществляют путем одновременного смешения этого блоксополимера с растворителем и нерастворителем или с трихлорфторметаном - фреоном-11. Последний заменяет собой систему "растворитель-нерастворитель". На стадии получения мицеллярного раствора указанного блоксополимера получают не только двухфазную термодинамически устойчивую систему, но и такую, в которой дисперсная фаза имеет необходимую для последующего формования газоселективного слоя дисперсность, близкую к монодисперсности с заданным размером частиц. Последний связан в предлагаемой технологии получения газоразделительной мембраны с размером пор подложки, который выбирают из соотношения: Dп=(0,05-0,9)Dм.

Для реализации изобретения в промышленных условиях в качестве гидрофобной пористой основы-подложки можно использовать фторуглеродную ультра- или микрофильтрационную мембрану, полученную на основе тканых или нетканых материалов (например, из волокон полипропилена (ТУ 17-14-23-38-86), или на основе лавсановых волокон ЛЭ-34 (ТУ СП 13-64-35-83), или полотна из термоскрепленных полиэфирных волокон (ТУ 412-758-89), или капроновой ткани (ОСТ 17-232-80)) и сополимеров винилиденфторида с тетрафторэтиленом (ТУ 6-05-1441-71).

Для промышленных целей можно использовать производимый в промышленных масштабах блоксополимер типа "Лестосил СМ" (ТУ 38.40-3389-81) и отверждающую систему состава:
этилсиликат 40-1,0 мас.ч. в 9,0 мас.ч. гексана и
октоат олова -1,0 мас.ч. в 99,0 мас.ч. гексана.

Другие компоненты рабочего раствора также можно использовать в промышленно производимых формах.

На чертеже приведена принципиальная технологическая схема получения газоразделительной композитной мембраны согласно изобретению.

1, 2, 3 - мерники соответственно для петролейного эфира (или гексана), метиленхлорида (или хлороформа) и этилового спирта (или бутанола, или пропанола, или изопропанола),
4 и 5 - емкости для получения отверждающей системы, в частности раствора этилсиликата-40 в гексане (4) и раствора октоата олова в гексане (5),
6 - реактор для получения мицеллярного раствора блоксополимера,
7 - насос для подачи мицеллярного раствора в фильтр,
8 - фильтр для фильтрации мицеллярного раствора блоксополимера,
9 - деаэратор для обезвоздушивания мицеллярного раствора,
10 - камера для формования газоселективной мембраны по "сухому" методу,
11 - ванна с рабочим раствором (блоксополимера и отверждающей системы),
12 - калибрующий валок,
13 - наносящий валок,
14 - приемная бобина для газоразделительной мембраны,
15 - бобина для пористой гидрофобной основы-подложки - ультра- или микрофильтрационной мембраны.

ПРИМЕРЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Заявляемая конструкция газоразделительной композитной мембраны на фторуглеродных ультра- или микрофильтрационных мембранах и способ ее получения был проверен в опытно-промышленном масштабе на установке непрерывного формования газоселективного слоя. Принципиальная схема этой установки показана на чертеже.

Исходные компоненты - петролейный эфир (или гексан), метиленхлорид (или хлороформ) и этиловый спирт (или другой ингибитор) загружают в мерники (1, 2, 3) соответственно и из мерников их подают в реактор (6) для приготовления мицеллярного раствора блоксополимера. В емкостях с мешалками (4 и 5) готовят отверждающую систему, в частности - в емкости (4) готовят раствор этилсиликата-40 в гексане, в емкости (5) - раствор октоата олова в гексане. В реакторе (6) при нормальной температуре и давлении получают мицеллярный раствор блоксополимера, загружая туда указанные компоненты из емкостей (1-5), причем компоненты отверждающей системы подают в реактор (6) после полного самопроизвольного диспергирования блоксополимера. Растворитель, нерастворитель и ингибитор подают в реактор (6) одновременно. Полученный в реакторе (6) мицеллярный раствор блоксополимера далее последовательно подают с помощью насоса (7) на фильтр (8) для фильтрации раствора при давлении порядка 0,2-0,3 МПа и далее - на деаэратор (9) для удаления из раствора пузырьков воздуха.

Отфильтрованный и деаэрированный формовочный рабочий раствор загружают в ванну (11) камеры для непрерывного формования газоразделительной мембраны по "сухому" методу с помощью валков (13 и 12) и свободного испарения легкокипящих компонентов рабочего раствора в сушильной (верхней) части камеры (10). Температуру рабочего раствора в ванне (11) поддерживают в пределах (205)oС. Температуру в сушильной (верхней) части камеры (10) поддерживают в пределах 50-90oС.

Наносящий валок (13) и калибрующий валок (12) частично погружены в ванну (11), в которой находится рабочий раствор. Перед нанесением (перенесением) этого раствора на движущуюся (сматывается с бобины (15)) пористую подложку между валками (13 и 12) устанавливается зазор "" в пределах от 50 до 120 мкм. Скорость вращения этих валков устанавливают различную, более медленную окружную скорость устанавливают для калибрующего валка (13) в пределах (Vк) 1,5-2,5 (0,3) м/мин; для наносящего валка окружная скорость устанавливается в пределах 3,0-5,0 (0,3) м/мин (Vн).

Готовая мембрана наматывается на приемную бобину (14).

Для повышения эксплуатационных показателей производимой мембраны согласно изобретению бобину (14) с полученной газоразделительной мембраной ставят на место бобины (15) и процесс нанесения газоселективного слоя повторяют, образуя на готовой мембране повторный (второй) газоселективный слой из того же самого блоксополимера с тем, чтобы исключить образование видимой границы между слоями и не понизить производительность мембраны.

Показатели газоразделительной мембраны, полученной согласно изобретению в соответствии с нижеприведенными конкретными примерами ее получения на установке непрерывного формования, приведены в таблице 1.

В таблицах 2, 3 приведены конкретные примеры получения газоразделительной композитной мембраны.


Формула изобретения

1. Газоразделительная композитная мембрана, состоящая из гидрофобной пористой гибкой подложки, выполненной в виде ультра- или микрофильтрационной фторуглеродной мембраны и скрепленного с ней в процессе формования газоразделительного диффузионного слоя, отличающаяся тем, что подложка выполнена в виде мембраны и имеет размер пор, выбранный из соотношения Dп=(0,05-0,9)Dм, где Dп - размер пор подложки, Dм - размер мицелл рабочего раствора блоксополимера - эквивалентный диаметр, а в качестве диффузионного слоя она содержит триметилфенилполисилоксан или диметилдифенилполисилоксан-дифенилполисилсесквиоксановый блоксополимер, имеющий блоки структуры

где R -СН3 или -С6Н5;

а=0,1-0,33;

m=55-350;

n=5-25.

2. Способ получения газоразделительной композитной мембраны по п.1, заключающийся в том, что готовят рабочий раствор в виде мицеллярной системы самопроизвольным диспергированием блоксополимера - триметилфенилполисилоксана или диметилдифенилполисилоксан-дифенилполисилсесквиоксанового блоксополимера, имеющий блоки структуры

где R -СН3 или -C6H5;

a=0,1-0,33;

m=55-350;

n=5-25,

путем одновременного смешения блоксополимера с растворителем и нерастворителем при следующем содержании компонентов, мас.ч.:

Блоксополимер 2,0-8,0

Растворитель 5,0-40,0

Нерастворитель 30,0-90,0

или блоксополимер смешивают с фреоном-11-фтортрихлорметаном в массовом соотношении 1:9-45 и формуют из полученного рабочего раствора по сухому методу газоселективный слой на пористой гидрофобной гибкой подложке, выполненной в виде ультра- или микрофильтрационной фторуглеродной мембраны, имеющей размер пор, выбранный из соотношения Dп=(0,05-0,9)Dм, где Dп - размер пор подложки; Dм - размер мицелл рабочего раствора блоксополимера - эквивалентный диаметр.

3. Способ получения газоразделительной композитной мембраны по п.1, заключающийся в том, что готовят рабочий раствор в виде мицеллярной системы путем одновременного смешения блоксополимера с растворителем и смесью нерастворителя и ингибитора отверждения блоксополимера при соотношении компонентов в мицеллярном растворе, мас.ч.:

Блоксополимер 2,0-8,0

Растворитель 5,0-40,0

Нерастворитель 30,0-90,0

Ингибитор 3,0-12,0

4. Способ получения газоразделительной композитной мембраны по пп.2 и 3, отличающийся тем, что в качестве растворителя используют хлороформ или метиленхлорид, в качестве нерастворителя - гексан или петролейный эфир, а ингибитор отверждения выбирают из группы этанол, бутанол, пропанол, изопропанол.

5. Способ получения газоразделительной композитной мембраны по пп.2-4, отличающийся тем, что формование газоразделительного слоя осуществляют с помощью наносящего и калибрующего валков, частично погруженных в ванну с рабочим раствором блоксополимера, при величине зазора между валками 50-120 мкм, окружной скорости калибрующего валка от 1,5 до 2,5(±0,3) м/мин и окружной скорости наносящего валка от 3 до 5(±0,3) м/мин.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к технологии получения газоразделительной композитной мембраны и может найти применение в процессах газоразделения и концентрирования газов, используемых в химической, нефтехимической, медицинской промышленностях

Изобретение относится к мембране или матрице, предназначенной для регулирования скорости проникновения лекарственного средства, где указанная мембрана или матрица содержит эластомерную композицию на основе силоксана, и к способу получения такой эластомерной композиции
Изобретение относится к области мембранной технологии и может найти применение для разделения и концентрирования газов, в частности концентрирования углекислого газа из различных газовых смесей в химической, нефтехимической и других отраслях промышленности

Изобретение относится к способу получения полимерной мембраны, преимущественно для ультрафильтрации и нанофильтрации, а также к мембране, изготовленной этим способом, и к применению такой мембраны для ультрафильтрации или для нанофильтрации

Изобретение относится к извлечению кислых компонентов из газовых потоков, таких как попутные газы из скважин или дымовые/выхлопные газы с использованием мембран, содержащих макромолекулярный самоорганизующийся полимер. Приводят в контакт указанный газовый поток (газовую смесь) с полимером (мембраной). Полимер представляет собой макромолекулярный самоорганизующийся полимерный материал. Самоорганизующийся полимер (материал) выбран из группы, состоящей из сополимера сложного эфира и амида, сополимера простого эфира и амида, сополимера сложного эфира и уретана, сополимера простого эфира и уретана, сополимера простого эфира и карбамида, сополимера сложного эфира и карбамида или их смеси. Молекулярно самоорганизующийся полимер содержит повторяющиеся самоорганизующиеся звенья структурных формул (I)-(IV). 24 з.п. ф-лы, 9 табл., 6 пр.

Изобретение относится к ламинированной мембране для использования в центральном блоке вентиляционной системы с рекуперацией энергии для обмена теплом и паром между двумя независимыми входящим и выходящим воздушными потоками без их перемешивания. Ламинированная мембрана имеет волокнистую микропористую поддерживающую подложку и пленку, ламинированную на микропористую поддерживающую подложку. В состав пленки входит сульфированный блок-сополимер, имеющий по меньшей мере один концевой блок А и по меньшей мере один внутренний блок B, в котором каждый блок А, по существу, не содержит сульфокислотных или сульфоэфирных функциональных групп, и каждый блок B представляет собой полимерный блок, содержащий от приблизительно 10 до приблизительно 100 мол.% сульфокислотных или сульфоэфирных функциональных групп в зависимости от числа мономерных звеньев. Описана также система рекуперации энергии, содержащая множество ламинированных мембран, образованных микропористой волокнистой поддерживающей подложкой и пленкой, в состав которой входит сульфированный блок-сополимер, ламинированный на микропористой поддерживающей подложке. Технический результат - улучшенные значения скорости переноса водяного пара, в частности выше 96%. 2 н. и 15 з.п. ф-лы, 7 ил., 2 табл.

Изобретение относится к композиции для мембраны или электрода, содержащей (a) по меньшей мере один сульфированный блок-сополимер, содержащий по меньшей мере два концевых полимерных блока А и по меньшей мере один внутренний полимерный блок В, причем каждый блок А, по существу, не содержит сульфокислотных или сульфонатных функциональных групп, а каждый блок В является полимерным блоком, содержащим от примерно 10 до примерно 100 мол.% сульфокислотных или сульфонатных функциональных групп в расчете на число мономерных звеньев в блоке В; и (b) дисперсный углерод; причем весовое отношение дисперсного углерода (b) к сульфированному блок-сополимеру (a) составляет по меньшей мере 0,01:1. Изобретение также относится к применению электрода или мембраны, изготовленных из указанной композиции, при производстве топливного элемента, батареи или устройства аккумулирования, поглощения или рекуперации энергии, устройств для обратного или прямого электродиализа, для контроля влажности, для ограниченного давлением прямого или обратного осмоса, для электродеионизации или емкостной деионизации или для очистки или обезвреживания газов или жидкостей. 4 н. и 11 з.п. ф-лы, 13 ил., 3 табл.

Изобретение относится к модифицированному сульфированному блок-сополимеру, мембране, устройству, электродеионизационной установке, а также к изделию с покрытием. Блок-сополимер содержит по меньшей мере два концевых полимерных блока А, и по меньшей мере один внутренний полимерный блок В. Каждый блок А, по существу, не содержит сульфокислотных или сульфонатных функциональных групп. Каждый блок В содержит мономерные звенья, чувствительные к сульфированию, и содержит в расчете на количество чувствительных к сульфированию мономерных звеньев от 10 до 100 мол.% функциональной группы формулы (I): или ее соли, где R1 представляет собой фрагмент -(A1-NRa)xRb или фрагмент -(А1-NRa)y-A2-Z; R2 представляет собой атом водорода, алкил или один из фрагментов R1; или R1 и R2 вместе с атомом азота, к которому они присоединены, образуют необязательно замещенный 5-7-членный цикл, состоящий из 1-3 атомов азота, 2-6 атомов углерода и необязательно 1 или 2 несмежных кольцевых атомов кислорода и/или серы, x имеет значение 0, 1, 2 или 3; y имеет значение 1 или 2; A1 и A2 каждый независимо представляет собой линейный алкилен, необязательно замещенный одним или большим количеством метильных и/или этильных групп; Ra и Rb каждый независимо представляет собой атом водорода или алкил; Z представляет собой -СО2Н, -SO3H или -P(O)(ОН)3, и где модифицированный сульфированный блок-сополимер имеет общую конфигурацию А-В-А, А-В-А-В-А, (A-B-A)nX, (A-B)nX, A-D-B-D-А, A-B-D-B-A, (A-D-B)nX, (A-B-D)nX или их смеси, где n равно целому числу от 2 до 30, и X обозначает остаток сочетающего агента, и где каждый блок D представляет собой полимерный блок, устойчивый к сульфированию, и множество блоков А, блоков В или блоков D являются одинаковыми или разными. На основе модифицированного сульфированного блок-сополимера получают мембрану. Ее используют в топливных элементах; фильтрационных устройствах; в следующих устройствах: для регулировки влажности, для прямого электродиализа, для обратного электродиализа, для ограниченного давлением осмоса, для прямого осмоса, для обратного осмоса, для селективного добавления воды, для селективного удаления воды, для емкостной деионизации, для молекулярной фильтрации, для удаления соли из воды, для обработки промышленной воды, продуцируемой при гидроразрыве, для приложений с транспортом ионов, для умягчения воды и в аккумуляторах. Электродеионизационная установка содержит по меньшей мере один анод, по меньшей мере один катод и одну или более мембран, при этом одна из мембран представляет собой вышеуказанную мембрану. Изделие с покрытием включает субстрат и покрытие, содержащее вышеуказанный модифицированный сульфированный блок-сополимер. Изобретение позволяет получить мембраны с высокой эффективностью переноса воды и селективного переноса ионов, имеющие хорошую стабильность размеров при погружении в воду и низкую скорость проницаемости для хлорида натрия. 5 н. и 16 з.п. ф-лы, 15 табл., 11 ил., 6 пр.
Наверх