Волоконный световод (варианты) и способ его получения

 

Изобретение относится к области волоконно-оптических стойких линий связи, к воздействию ионизирующего и ультрафиолетового излучения, и может быть использовано в устройствах для передачи изображений и рамановских волоконных лазерах и усилителях. Волоконный световод состоит из сердцевины, оболочки и герметичного покрытия и содержит от 11019 до 51021 см-3 молекул водорода или от 11020 до 5102 см-3 молекул дейтерия. При изготовлении световода после нанесения герметичного покрытия его помещают в газовую атмосферу под давлением от 1 до 1000 МПа и температуре от 20 до 1000oС на время от 20 мин до 100 дней. Обеспечено повышение стойкости к воздействию ионизирующего излучения, включающего ультрафиолетовое излучение, гамма-излучения, нейтроны, протоны, электроны, альфа-частицы, и увеличено рамановское рассеяние. 3 c. и 20 з.п. ф-лы, 3 ил.

Изобретение относится к области волоконных световодов, в частности стойких к воздействию ионизирующего и ультрафиолетового излучения, и промышленно применимо в волоконно-оптической связи, устройствах для передачи изображений и рамановских волоконных лазерах и усилителях.

Известен волоконный световод, содержащий сердцевину и оболочку на основе кварцевого стекла, а также герметичное покрытие, нанесенное поверх оболочки, причем световод содержит молекулы водорода [A.E.Miller, M.F.Yan, H.A.Watson, K.T.Nelson "Radiation-hardened optical fibers for high dosage space applications", Materials Research Society Symposium Proceedings, vol.244, pp.3-8 (1992)] . Концентрация молекул водорода в этом световоде не превышает 1017 см-3.

Недостатком этого световода является недостаточно высокая концентрация молекул водорода в световоде, что обуславливает недостаточно высокую стойкость к воздействию ионизирующего излучения.

Наиболее близким к заявляемому является известный волоконный световод, содержащий сердцевину и оболочку на основе кварцевого стекла, а также герметичное покрытие, нанесенное поверх оболочки, причем световод содержит молекулы водорода [патент США 5901264, МПК G 02 В 6/02].

Недостатком этого ближайшего аналога является недостаточно высокая концентрация молекул водорода в световоде, что обуславливает недостаточно высокую стойкость к воздействию ионизирующего излучения.

Наиболее близким к заявляемому является известный волоконный световод, содержащий сердцевину и оболочку на основе кварцевого стекла, а также герметичное покрытие, нанесенное поверх оболочки, причем световод содержит молекулы дейтерия [патент Японии JP3158807, МПК G 02 В 6/44]. Концентрация молекул дейтерия в этом световоде не превышает 11020 см-3.

Недостатком этого ближайшего аналога является недостаточно высокая концентрация молекул дейтерия в световоде, что обуславливает недостаточно высокое рамановское рассеяние.

Известен способ изготовления световода, включающий вытягивание световода из заготовки и нанесение герметичного покрытия в процессе вытягивания [A.E. Miller, M. F.Yan, H.A.Watson, K.T.Nelson "Radiation-hardened optical fibers for high dosage space applications". Materials Research Society Symposium Proceedings, vol. 244, pp.3-8 (1992)]. В данном способе заготовку световода помещают в кварцевую трубку с высоким содержанием гидроксила и сплавляют с трубкой. Из полученной таким образом заготовки вытягивают световод, а в процессе вытяжки на него наносят алюминиевое покрытие. В процессе вытяжки происходит разрыв О-Н связей в стекле наружной трубки и образование молекул водорода, которые диффундируют в сердцевину световода.

Недостатком этого способа является недостаточно высокая концентрация молекул водорода в световоде, что обуславливает недостаточно высокую стойкость к воздействию ионизирующего излучения.

Известен способ изготовления световода, включающий вытягивание световода из заготовки и нанесение герметичного покрытия в процессе вытягивания [патент США 5901264, МПК G 02 В 6/02]. В этом способе в процессе вытягивания водородом насыщают неостывший световод, после чего на него наносят герметичное покрытие. Это достигается за счет того, что в процессе вытяжки световод пропускается через камеру, заполненную водородом, при этом давление в камере незначительно выше атмосферного.

Недостатком этого способа является недостаточно высокая концентрация молекул водорода в световоде, что обуславливает недостаточно высокую стойкость к воздействию ионизирующего излучения.

Наиболее близким к заявляемому является известный способ изготовления световода, включающий вытягивание световода из заготовки, нанесение на него герметичного покрытия в процессе вытягивания и помещение световода в газовую атмосферу после нанесения герметичного покрытия [патент Японии 10167770, МПК G 02 В 6/44] . В этом способе на световод наносят герметичное покрытие из углерода. После этого нагретый световод протягивают через объем, занятый дейтерием.

Недостатком этого ближайшего аналога являются недостаточно высокая концентрация молекул дейтерия в световоде, что обуславливает недостаточно высокую стойкость к воздействию ионизирующего излучения.

С помощью заявляемого изобретения решается техническая задача повышения концентрации молекул водорода и/или дейтерия в световоде, вследствие чего повышается стойкость к воздействию ионизирующего излучения (ультрафиолетовое излучение, гамма-излучение, нейтроны, протоны, электроны, альфа-частицы), а также увеличивается рамановское рассеяние.

Поставленная задача решается тем, что в известном волоконном световоде, содержащем сердцевину и оболочку на основе кварцевого стекла, а также герметичное покрытие, нанесенное поверх оболочки, причем световод содержит молекулы водорода, содержание молекул водорода составляет от 11019 до 51021 см-3.

В частности, герметичное покрытие может быть выполнено из металла или углерода. При этом герметичное металлическое покрытие может быть выполнено из одного материала из группы алюминий, медь, золото, серебро, никель. При этом поверх герметичного покрытия из углерода может быть нанесено полимерное покрытие.

В частности, световод может содержать, по меньшей мере, две сердцевины.

В частности, световод может содержать, по меньшей мере, две оболочки. При этом оболочка может быть легирована фтором.

В частности, световод может содержать молекулы дейтерия.

Поставленная задача решается тем, что в известном волоконном световоде, содержащем сердцевину и оболочку на основе кварцевого стекла, а также герметичное покрытие, нанесенное поверх оболочки, причем световод содержит молекулы дейтерия, содержание молекул дейтерия составляет от 11020 до 51021 см-3.

В частности, герметичное покрытие может быть выполнено из металла или углерода. При этом герметичное металлическое покрытие может быть выполнено из одного материала из группы алюминий, медь, золото, серебро, никель. При этом поверх герметичного покрытия из углерода может быть нанесено полимерное покрытие.

В частности, световод может содержать, по меньшей мере, две сердцевины.

В частности, световод может содержать, по меньшей мере, две оболочки. При этом оболочка может быть легирована фтором.

В частности, световод может содержать молекулы водорода.

Поставленная задача решается также тем, что в известном способе изготовления световода, включающем вытягивание световода из заготовки, нанесение на него герметичного покрытия в процессе вытягивания и помещение световода в газовую атмосферу после нанесения герметичного покрытия, световод помещают в атмосферу водорода и/или дейтерия, по меньшей мере, однократно под давлением от 1 до 1000 МПа и температуре от 20 до 1000oС на время от 20 минут до 100 дней.

В частности, световод можно поместить в герметичную камеру.

В частности, в камеру можно дополнительно поместить вещество-активатор диффузии газа через герметичное покрытие. При этом в качестве вещества-активатора можно использовать гидридообразующее интерметаллическое соединение редкоземельных и/или переходных металлов. В качестве вещества-активатора можно использовать по меньшей мере один из сплавов из группы RTx-yMy, где R - по меньшей мере, один редкоземельный элемент, Т = Fe, Co, Ni, или их смесь, М= Mn, Cr, Cu, A1 или их смесь, х = 25, у = 01, и/или из группы ABz, где А = Zr, Ti, или их смесь, В= Cr, Mn, V, Ni, Со, Fe или их смесь, z = 1,52,5. В частности, в качестве вещества-активатора можно использовать LaNi5.

В частности, перед помещением световода в газовую атмосферу или в процессе его нахождения в этой атмосфере его можно облучать от источника ионизирующего излучения.

Заявляемые изобретения, представляющие собой варианты волоконного световода и способ их получения, связаны единым изобретательским замыслом.

Повышение стойкости волоконного световода к воздействию ионизирующего излучения за счет насыщения стекла световода молекулами водорода и/или дейтерия обусловлено следующими механизмами. Водород и/или дейтерий образуют химическую связь с точечными дефектами в сетке стекла, возникающими под действием ионизирующего излучения, тем самым уменьшая поглощение света в световоде, наведенное этим излучением. Эффект повышения радиационной стойкости световода усиливается с ростом содержания молекул водорода и/или дейтерия в световоде. С ростом содержания этих молекул также усиливается рамановское рассеяние на молекулах газа, растворенного в стекле световода.

В основу заявляемого изобретения положен эффект диффузии молекул водорода и/или дейтерия через герметичное покрытие, предварительно нанесенное на световод, в процессе выдержки последнего в атмосфере газа при повышенном давлении и температуре. Кроме того, нами было установлено, что гидридообразующие интерметаллические соединения редкоземельных и/или переходных металлов позволяют ускорить процесс диффузии газов через герметичное покрытие.

Изобретение поясняется чертежами, где на фиг. 1 показан волоконный световод, на фиг.2 - спектры начальных оптических потерь в заявляемом световоде и в световоде, не содержащем молекул водорода и дейтерия, а на фиг.3 - спектры оптических потерь, наведенных гамма-излучением в заявляемом световоде и в световоде, не содержащем молекул водорода и дейтерия.

Волоконный световод (фиг.1) содержит герметичное покрытие 1, оболочку 2 и сердцевину 3.

Заготовку для волоконного световода изготовили методом внешнего плазменного осаждения. Из заготовки вытянули световод с сердцевиной из синтетического кварцевого стекла КС-4В. В процессе вытяжки на световод методом намораживания было нанесено герметичное алюминиевое покрытие. Диаметр сердцевины 3, толщина оболочки 2 из кварцевого стекла, легированного фтором, и толщина алюминиевого покрытия 1 составляли соответственно 100 мкм, 10 мкм и 20 мкм, а числовая апертура световода NA=0,16. Отрезок световода длиной 20 м, свернутый в бухту, был помещен в камеру. После этого камера была засыпана порошком гидридообразующего интерметаллического соединения LaNi5, а затем вакуумирована до остаточного давления 0,01 Торр сначала при комнатной температуре, а затем при температуре 150oС. После этого камера была заполнена молекулярным водородом до давления 154 МПа. Световод в камере при вышеуказанных условиях находился в течение 4 недель. После извлечения из камеры световод подвергся термической циклической обработке для снижения дополнительных микроизгибных оптических потерь, вызванных разностью коэффициентов термического расширения стеклянного световода и герметичного покрытия. Было проведено 4 термических цикла. В течение первого цикла температура изменялась от 20 до 80oС и обратно, при этом световод находился при температуре 80oС в течение 2 ч. Затем были проведены еще 3 цикла с изменением температуры в диапазоне от 20 до 60oС. Скорость изменения температуры составляла 0,5 град/мин.

Сравнение спектров оптических потерь в световоде (фиг.2) до (кривая 4) и после (кривая 5) выдержки в водородной атмосфере позволили сделать вывод, что содержание Н2 в световоде составило 5,71020 см-3. О содержании молекул водорода судили по поглощению на длине волны 1,24 мкм в спектре оптических потерь 5. После выдержки этого световода в нормальных условиях в течение 5 месяцев измерения спектра оптических потерь были проведены повторно. Было установлено, что в пределах погрешности измерений (2%) спектр не изменился. Следовательно, герметичное алюминиевое покрытие препятствует выходу молекул Н2 из световода и поэтому обеспечивает длительное время эксплуатации световода.

Путем гамма-облучения световода от источника 60Со до дозы 1,7 МГр при мощности дозы 5,0 Гр/с и измерения спектра наведенного оптического поглощения через 2 ч после завершения облучения (фиг.3) было установлено, что наведенное поглощение (кривая 6) в отрезке заявляемого световода несоизмеримо ниже, чем наведенное поглощение (кривая 7) в отрезке аналогичного световода, не содержащего 2, который облучался одновременно с отрезком заявляемого световода и при тех же условиях облучения (фиг.3).

В отдельном эксперименте была установлена эффективность использования гидридообразующего интерметаллического соединения LaNi5 для ускорения диффузии водорода через алюминиевое покрытие. Световод выдерживался в водородной атмосфере при 150oС и давлении 120 МПа в течение 1 недели в одном случае в присутствии порошка LaNi5, в другом - без него. В первом случае содержание молекул водорода в сердцевине оказалось в 2,5 раза больше. Использование гидридообразующего интерметаллического соединения позволяет в несколько раз сократить время выдержки световода в атмосфере газа.

Формула изобретения

1. Волоконный световод, содержащий сердцевину и оболочку на основе кварцевого стекла, а также герметичное покрытие, нанесенное поверх оболочки, причем световод содержит молекулы водорода, отличающийся тем, что содержание молекул водорода составляет 11019 - 51021 см-3.

2. Световод по п.1, отличающийся тем, что герметичное покрытие выполнено из металла или углерода.

3. Световод по п.2, отличающийся тем, что герметичное покрытие выполнено из одного материала из группы алюминий, медь, золото, серебро, никель.

4. Световод по п.2, отличающийся тем, что поверх герметичного покрытия из углерода нанесено полимерное покрытие.

5. Световод по п.1, отличающийся тем, что он содержит, по меньшей мере, две сердцевины.

6. Световод по п.1, отличающийся тем, что он содержит, по меньшей мере, две оболочки.

7. Световод по п.1, отличающийся тем, что оболочка легирована фтором.

8. Световод по п.1, отличающийся тем, что он содержит молекулы дейтерия.

9. Волоконный световод, содержащий сердцевину и оболочку на основе кварцевого стекла, а также герметичное покрытие, нанесенное поверх оболочки, причем световод содержит молекулы дейтерия, отличающийся тем, что содержание молекул дейтерия составляет 11020-51021 см-3.

10. Световод по п.9, отличающийся тем, что герметичное покрытие выполнено из металла или углерода.

11. Световод по п.10, отличающийся тем, что герметичное покрытие выполнено из одного материала из группы алюминий, медь, золото, серебро, никель.

12. Световод по п.10, отличающийся тем, что поверх герметичного покрытия из углерода нанесено полимерное покрытие.

13. Световод по п.9, отличающийся тем, что он содержит, по меньшей мере, две сердцевины.

14. Световод по п.9, отличающийся тем, что он содержит, по меньшей мере, две оболочки.

15. Световод по п.9, отличающийся тем, что оболочка легирована фтором.

16. Световод по п.9, отличающийся тем, что он содержит молекулы водорода.

17. Способ изготовления световода, включающий вытягивание световода из заготовки, нанесение на него в процессе вытягивания герметичного покрытия и последующее помещение световода в газовую атмосферу, отличающийся тем, что световод помещают в атмосферу водорода и/или дейтерия, по меньшей мере, однократно под давлением 1-1000 МПа и температуре 20-1000С на время 20 мин - 100 дней.

18. Способ по п.17, отличающийся тем, что световод помещают в герметичную камеру.

19. Способ по п.18, отличающийся тем, что в камеру дополнительно помещают вещество - активатор диффузии газа через герметичное покрытие.

20. Способ по п.19, отличающийся тем, что в качестве вещества-активатора используют гидридообразующее интерметаллическое соединение редкоземельных и/или переходных металлов.

21. Способ по п.20, отличающийся тем, что в качестве вещества-активатора используют по меньшей мере один из сплавов из группы RTx-yMy, где R - по меньшей мере один редкоземельный элемент, Т=Fe, Co, Ni или их смесь, М=Mn, Cr, Cu, A1 или их смесь, х=25, у0-1, и/или из группы ABz, где А=Zr, Ti, или их смесь, В=Cr, Mn, V, Ni, Со, Fe или их смесь, z=1,52,5.

22. Способ по п.20, отличающийся тем, что в качестве вещества-активатора используют LaNi5.

23. Способ по п.17, отличающийся тем, что перед помещением световода в газовую атмосферу или в процессе его нахождения в этой атмосфере его облучают от источника ионизирующего излучения.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к оптическому волокну с низкой дисперсией, используемому, например, при осуществлении оптической передачи со спектральным уплотнением в диапазоне 1,5 мкм и к оптической системе передачи с использованием такого оптического волокна с низкой дисперсией

Изобретение относится к оптическому волокну, имеющему улучшенную характеристику водородостойкости

Изобретение относится к одномодовым волоконно-оптическим волноводам с управляемой дисперсией и к способу изготовления таких волноводов
Изобретение относится к оптическим устройствам, а конкретно к волоконным световодам, прозрачным в среднем и дальнем ИК-диапазоне
Изобретение относится к волоконным световодам как передающей среде для систем передачи информации

Изобретение относится к волоконной оптике и может быть использовано в волоконно-оптических датчиках физических величин и волоконно-оптических гироскопах
Изобретение относится к волоконной оптике, в частности к технологии изготовления труб из кварцевого стекла методом наружного парофазного осаждения для получения волоконных световодов

Изобретение относится к золь-гелевому процессу в целом и более конкретно к способу изготовления трубы из кварцевого стекла, содержащего высокочистую и высокоплотную двуокись кремния, в результате применения золь-гелевого процесса

Изобретение относится к производству минерального волокна, используемого для теплоизоляции трубопроводов, утепления перекрытий в строительстве и для звукоизоляции

Изобретение относится к способу получения вытянутых стеклянных изделий, не содержащих пузырьков, в частности к способу получения оптических волокон, особенно волокон усиления, используемых в волоконных усилителях
Изобретение относится к волоконным световодам как передающей среде для систем передачи информации

Изобретение относится к созданию способов изготовления заготовок оптического волокна одномодовой и многомодовой конструкции с использованием плазменного процесса внешнего осаждения из паровой (газовой) фазы
Наверх