Планапохроматический микрообъектив с увеличенным рабочим расстоянием

 

Микрообъектив содержит три компонента, первый из которых содержит n фронтальных одиночных положительных линз, второй - две двусклеенные линзы, первая из которых состоит из отрицательной и положительной линз, а вторая склеена положительной и отрицательной линз, третий состоит из двусклеенной из положительной и отрицательной линз из двух отрицательных линз и заключенной между ними положительной линзы. Количество n фронтальных одиночных положительных линз может принимать значения от 0 до 3-х. Обеспечивается достижение планапохроматической аберрационной коррекции в микрообъективе с увеличенным рабочим расстоянием. 1 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области микроскопии и может быть использовано в микроскопах отраженного света для измерения, исследования и фотографирования особо тонких топографических структур в светлом и темном поле при оценке качества изготовления и аттестации в условиях промышленного производства изделий микроэлектроники. В некоторых из таких микрообъективов требуется получение планапохроматической аберрационной коррекции и увеличенного рабочего расстояния от плоскости предмета до первой поверхности объектива, например, для возможности использования контактных приспособлений ретуширования и измерения.

Известны отечественные микрообъективы [1], выпускаемые на ЛОМО, которые используются в микроскопах отраженного света типа "МКД" для исследования топологических структур. Объективы имеют удовлетворительное качество изображения только для осевой точки предмета. Они имеют нестандартную высоту (h=94 мм вместо общепринятой 45 мм), значительные аберрации в изображении внеосевых точек объекта (например, остаточная хру составляет 1.3-1.7%), не соответствуют современному ряду стандартных фокусных расстояний.

Известны также микрообъективы отраженного света, например [2]. Они не обеспечивают требуемого качества изображения, т.к. остаточная хру составляет 1.5-2%, а сферохроматические аберрации превышают 2-3. Известны также объективы [3], где устранены эти недостатки, однако их конструкции не обеспечивают требуемых значений рабочих расстояний при заданном масштабе увеличения. Этому требованию соответствуют объективы [4], однако их оптические схемы содержат оптические материалы, не освоенные в отечественном производстве.

Наиболее близким к заявляемому объективу является объектив [5], который выпускается на ЛОМО. Его оптическая схема включает три компонента, первый из которых содержит "n" фронтальных одиночных положительных линз, второй две двусклеенные линзы, первая из которых состоит из отрицательной и положительной линз, третий состоит из двусклеенной из положительной и отрицательной линз и трехсклеенной из положительной, заключенной между двумя отрицательными линз. Этот микрообъектив выбран в качестве прототипа.

Он имеет удовлетворительное качество изображения для осевой точки предмета. Однако аберрации в изображении внеосевых точек объекта остаются значительными (например, остаточная хру составляет 1.7%). В этом объективе невозможно достижение планапохроматической коррекции. Кроме того, нестандартная высота и несоответствие ряду стандартных фокусных расстояний делают невозможным его применение во вновь разрабатываемых моделях микроскопов, что снижает его потребительские свойства.

Вместе с тем, в современных микроскопах отраженного света при решении задач анализа и измерения топологических структур микрообъективы должны иметь планапохроматическую аберрационную коррекцию; окрашенность в промежуточном изображении не допускается.

Задачей предлагаемого изобретения является получение целого ряда планапохроматических микрообъективов с увеличенными рабочими расстояниями различных увеличений, отвечающих современным требованиям.

Оптическая конструкция заявляемого микрообъектива универсальна и позволяет решить поставленную задачу.

Сущность предлагаемого изобретения заключается в том, что использование в качестве первого компонента фронтальных одиночных положительных линз позволяет оптимальным образом исправить аберрации внеосевых пучков, а выбор разного их количества позволяет проводить коррекцию в объективах с различными линейными увеличениями. Выполнение второй двусклеенной линзы второго компонента указанным образом позволяет оптимальным образом исправить вторичный спектр и сферохроматизм при увеличении рабочего отрезка объектива, что в сочетании со всеми остальными признаками позволяет получить оптимальную аберрационную балансировку и достигнуть планапохроматической коррекции в микрообъективе с увеличенным рабочим расстоянием.

Таким образом, использование в совокупности всех указанных признаков позволяет достигнуть технического результата, заключающегося в возможности достижения планапохроматической аберрационной коррекции в микрообъективе с увеличенным рабочим расстоянием. При этом рабочее расстояние увеличено на 30-50%.

Сущность изобретения поясняется чертежом, на котором представлена принципиальная схема микрообъектива, а также таблицей 1 и таблицей 2, в которых даны конструктивные параметры примеров конкретного исполнения. Объектив содержит три компонента, первый из которых содержит "n" фронтальных одиночных положительных линз поз.1, второй поз.2 - две двусклеенные линзы, первая из которых состоит из отрицательной и положительной линз, а вторая склеена из положительной и отрицательной линз; третий компонент поз.3 состоит из двусклеенной из положительной и отрицательной линз и трехсклеенной из положительной, заключенной между двумя отрицательными линз. При этом количество фронтальных одиночных положительных линз в различных вариантах исполнения меняется и может принимать значения от 0 до 3-х.

Работает предлагаемый планапохроматический микрообъектив с увеличенным рабочим расстоянием следующим образом: линзы поз.1 строят увеличенное мнимое изображение объекта, внося при этом минимальные монохроматические аберрации осевой точки. Вносятся аберрации изображения внеосевых точек предмета - отрицательная меридиональная и сагиттальная кривизна, хроматические аберрации увеличения и положения. Затем линзы поз.2 оборачивают изображение, выравнивая монохроматические и хроматические аберрации практически по третьим порядкам, строя его за эквивалентной фокальной плоскостью третьего компонента. Короткофокусный третий компонент работает к качестве сильного отрицательного реверсивного телеобъектива, давая коррекционный запас для исправления аберраций внеосевых пучков и строя изображение в "бесконечности". Рассчитанные в соответствии с современной концепцией объективы работают совместно с дополнительной системой F'=160 мм.

В качестве примеров конкретного исполнения рассчитан комплект планапохроматических микрообъективов с увеличенными рабочими расстояниями, отличающихся значениями фокусов (линейных увеличении). При этом количество "n" фронтальных одиночных положительных линз различно для объективов различных увеличении. Так, при n=0 получен объектив с линейным увеличением 10 крат, числовой апертурой 0.20 и рабочим расстоянием ~20 мм. При n=1 получен объектив с линейным увеличением 20 крат, числовой апертурой 0.35 и рабочим расстоянием ~ 16 мм. При n=2 получен объектив с линейным увеличением 50 крат, числовой апертурой 0.50 и рабочим расстоянием ~10 мм. При n=3 получен объектив с линейным увеличением 100 крат, числовой апертурой 0.65 и рабочим расстоянием ~ 5 мм. Использование n>3 нецелесообразно вследствие увеличения продольных габаритов объективов и невозможности выполнения требований стандартизации.

Из материалов, представленных в таблице 1 и таблице 2, видно, что в планапохроматических микрообъективов с увеличенными рабочими расстояниями достигнута высокая степень аберрационной коррекции по всему полю зрения. Так для поля зрения 2у'=20 мм число Штреля составляет 0.80, для 2у'=25 мм число Штреля составляет 0.60, для осевой точки число Штреля составляет 0.85, что не достигнуто в известных аналогах и прототипе. Хроматическая разность увеличения в предлагаемых объективах близка к нулю, тогда как в прототипе она составляет 1.7%.

В результате реализации предложенного технического решения получены планапохроматические микрообъективы с увеличенными рабочими расстояниями, имеющие достаточно простую конструкцию, пригодную для реализации в условиях серийного производства. Информационная емкость в сравнении с аналогами повышена в 1.5-2 раза, следовательно, эффективность и производительность работ в условиях производственного цикла - исследования, измерения и аттестации, например, изделий микроэлектроники, может быть значительно повышена.

В объективах реализованы все стандартные требования, определяющие в соответствии с современными требованиями положения зрачков, применяемость оптических материалов, предпосылки реализации специализированных методов исследований. Применение унифицированной длины тубуса "бесконечность" дает дополнительные преимущества и удобство использования объектива с другими, имеющими иной тип оптической коррекции.

Источники информации 1. Авторское свидетельство СССР 666507, М. кл. G 02 В 21/02.

2. Патент США 4384765.

3. Патент США 4540248.

4. Патент Японии 62-30605.

5. Авторское свидетельство СССР 679913, М. кл. G 02 В 21/02, 1978.

Формула изобретения

1. Планапохроматический микрообъектив с увеличенным рабочим расстоянием, содержащий три компонента, первый из которых содержит n фронтальных одиночных положительных линз, второй - две двусклеенные линзы, первая из которых состоит из отрицательной и положительной линз, третий состоит из двусклеенной из положительной и отрицательной линз и трехсклеенной из положительной, заключенной между двумя отрицательными линз, отличающийся тем, что вторая двусклеенная линза второго компонента склеена из положительной и отрицательной линз.

2. Объектив по п.1, отличающийся тем, что количество n фронтальных одиночных положительных линз принимает значения 0-3.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к оптике и может быть использовано при конструировании микрообъективов - ахроматов большого увеличения с предельными значениями числовых апертур без применения иммерсионных жидкостей для комплектации специализированных микроскопов типа "Биолам", "Бимам", "Люмам"

Изобретение относится к оптике и может быть использовано при конструировании объективов - ахроматов большого увеличения для комплектации крупносерийных микроскопов типа БИОЛАМ, БИМАМ, ЛЮМАМ

Изобретение относится к области микроскопии, точнее к микрообъективам, служащим для исследования особо тонких микроскопических структур в естественном свете и свете люминесценции

Изобретение относится к области микроскопии и может быть использовано в исследовательских микроскопах проходящего и отраженного света, к которым предъявляются повышенные требования к качеству изображения

Изобретение относится к оптическому приборостроению и может быть использовано в оптических системах гибких и жестких эндоскопов с малым диаметром, предназначенных для наблюдения внутренних полостей при эндоскопических исследованиях в медицине и различных областях техники

Изобретение относится к оптике, точнее к проектированию объективов микроскопов, предназначенных для получения увеличенного изображения особо тонких микроскопических структур

Изобретение относится к оптике и может быть использовано при конструировании микрообъективов с ахроматической коррекцией для комплектации крупносерийных микроскопов

Изобретение относится к оптическому приборостроению, а именно к объективам микроскопов, и может быть использовано в люминесцентных микроскопах, работающих при больших перепадах температур, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от =250 нм), а наблюдение производится в видимом и инфракрасном диапазоне от 404 до 1000 нм

Изобретение относится к области оптического приборостроения и может быть использовано в объективах микроскопов, а также в люминесцентных микроскопах, работающих при больших перепадах температур, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от 250 нм), а работа производится в видимом и инфракрасном диапазоне (от 404 до 1000 нм)

Изобретение относится к оптическому приборостроению, а именно к объективам микроскопов, и может использоваться в люминесцентных микроскопах, работающих при больших перепадах температур, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от 250 нм), а работа производится в видимом и инфракрасном диапазоне (от 404 до 1000 нм)

Изобретение относится к оптическому приборостроению, а именно к объективам микроскопов, и может быть использовано в люминесцентных микроскопах, работающих при больших перепадах температур, в которых возбуждение люминесценции проводится глубоким ультрафиолетом (от 250 нм), а работа проводится в видимом и инфракрасном диапазоне (от 404 до 1000 нм)

Объектив может быть использован в люминесцентных микроскопах, работающих при больших перепадах температур в проходящем и отраженном свете, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от 250 нм), а наблюдение производится в видимом диапазоне. Объектив содержит три компонента, первый компонент с оптической силой φ1 выполнен в виде двояковыпуклой линзы, второй компонент с оптической силой φ2 выполнен в виде двояковогнутой линзы, а третий компонент с оптической силой φ3 выполнен в виде двояковыпуклой линзы. Первый и третий компоненты выполнены из флюорита, а второй - из кварцевого стекла. Отношения оптических сил компонентов к оптической силе всего объектива φоб удовлетворяют следующим соотношениям: 1.5<φ1/φоб<2; |4|<φ2/φоб<|5|; 2<φ3/φоб<3, а отношения радиусов кривизны имеют следующие значения: в первом компоненте - |1.5|<R11/R12<|2.5|; во втором - |0.3|<R21/R22<|0.7|; в третьем - |0.8|<R31/R32<|1.7|, где R - радиус сферической поверхности, φ=1/f', f' - фокусное расстояние. Технический результат - увеличение рабочего расстояния для обеспечения возможности работать с толстыми кюветами в проходящем свете и с манипуляторами в отраженном, улучшение качества изображения по всему полю зрения и обеспечение допустимо малого коэффициента засветки. 1 ил., 1 пр., 1 табл.

Микрообъектив может быть использован для визуального наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности. Микрообъектив содержит последовательно расположенные пять компонентов, первый из которых выполнен в виде мениска, обращенного вогнутостью к пространству предметов. Второй положительный компонент выполнен склеенным из двояковыпуклой линзы и отрицательного мениска, обращенного вогнутостью к пространству предметов, третий двусклеенный компонент выполнен из отрицательного мениска, обращенного вогнутостью к пространству изображений, и двояковыпуклой линзы, а пятый компонент выполнен из одиночной двояковогнутой линзы и двух менисков, обращенных вогнутостью к пространству предметов. Коэффициент дисперсии νd положительных линз второго и третьего компонентов и мениска, расположенного за двояковогнутой линзой в пятом компоненте, νd≥70, а отрицательный мениск склеенной линзы третьего и двояковогнутая линза пятого компонентов имеют коэффициент дисперсии 42≤νd≤48. Технический результат - увеличение рабочего расстояния для обеспечения возможности работы с кюветами и манипуляторами, а также увеличение входной числовой апертуры при сохранении планапохроматической коррекции. 1 табл., 1 ил., 1 прилож.

Способ включает предварительное измерение технологические погрешностей линзовых узлов и расчет по ним величины изменения одного из воздушных промежутков и углы поворота каждого линзового узла вокруг оси наружного цилиндра линзового узла. Осуществляют осевой сдвиг и поворот всех линзовых узлов. Совмещают оптическую и механическую оси объектива путем радиального сдвига всех линзовых узлов. Объектив содержит размещенные в цилиндрическом отверстии корпуса с опорной торцевой плоскостью и наружным базовым резьбовым цилиндром линзовые узлы в общей цилиндрической оправе, установленной с возможностью осевого перемещения относительно опорной торцевой плоскости, и прокладное коррекционное кольцо и пружину для упругого осевого замыкания общей цилиндрической оправы. Объектив снабжен цилиндрической втулкой с прорезью, направленной вдоль оси цилиндрического отверстия корпуса, втулка жестко соединена с общей цилиндрической оправой линзовых узлов в радиальном направлении и упругим замыканием в осевом направлении пружиной. Втулка может перемещаться вдоль оси цилиндрического отверстия корпуса и разворачиваться вокруг этой оси. Цилиндрическое отверстие корпуса выполнено с эксцентриситетом Δк относительно наружного базового резьбового цилиндра объектива, а внутреннее отверстие общей цилиндрической оправы линзовых узлов выполнено с эксцентриситетом Δo относительно внешнего цилиндра общей цилиндрической оправы. Технический результат - повышение качества юстировки с одновременным обеспечением ее автоматизации. 2 н.п. ф-лы, 1 ил.
Наверх