Способ получения нанотрубок

 

Изобретение относится к области наноэлектроники, а более конкретно к способам получения нанотрубок. В основу изобретения положена техническая задача, заключающаяся в том, чтобы обеспечить управляемое детерминированное образование нанотрубок одинаковых диаметров от нескольких десятков нанометров и менее. Поставленная техническая задача решается тем, что на плазму дугового разряда воздействуют перпендикулярным магнитным полем индукцией 0,010,9 Тл, при давлении гелия (34)104 Па, напряжении 2035 В токе 2030 А и межэлектродном расстоянии 35 мм, затем меняют полярность дугового разряда с периодом 0,12 с. Применение предложенного способа получения нанотрубок обеспечивает управляемое детерминированное образование нанотрубок одинаковых диаметров от 2 до 30 нм. 1 ил.

Изобретение относится к области наноэлектроники, а более конкретно к способам получения нанотрубок.

Известен способ получения нанотрубок, включающий ионное реактивное распыление при высоком, несколько киловольт, напряжении в плазме тлеющего разряда, горящего в атмосфере аргона [Моряков О.С. Технология полупроводниковых приборов и изделий микроэлектроники. - В 10 кн. Кн. 7: Элионная обработка. Учебное пособие. - М.: Высшая школа, 1990 - 128 с., ил., с. 34].

Недостатком аналога является неуправляемое стохастическое образование нанотрубок различных диаметров от нескольких десятков нанометров и более.

Наиболее близким по технической сущности и достигаемому результату является способ получения нанотрубок, включающий термическое распыление электрода в плазме дугового разряда, горящего в атмосфере гелия. [Loiseau A., Demoncy N., Stephan О. // Science and Application of Nanotubes / Eds. D. Tomanek and R.J. Enbody. N.Y., 2000, p. 1-16.].

Недостатком прототипа является также неуправляемое стохастическое образование нанотрубок различных диаметров от нескольких десятков нанометров и более.

В основу изобретения положена следующая техническая задача: обеспечить управляемое детерминированное образование нанотрубок одинаковых диаметров от нескольких десятков нанометров и менее.

Поставленная техническая задача решается тем, что на плазму дугового разряда воздействуют перпендикулярным магнитным полем индукцией 0,010,9 Тл, при давлении гелия (34)104 Па, напряжении 2035 В, токе 2030 А и межэлектродном расстоянии 35 мм, затем меняют полярность дугового разряда с периодом 0,12 с.

Введение в способ получения нанотрубок воздействия на переменное электрическое поле магнитным полем, вектор индукции которого перпендикулярен вектору напряженности электрического поля в заданных диапазонах изменения величин магнитных и электрических параметров, обеспечивает управляемое детерминированное образование нанотрубок одинаковых диаметров от нескольких десятков нанометров и менее.

Сущность способа поясняется фиг.1, где показана схема устройства, реализующего предложенный способ, которое содержит два электрода 1, 2, электромагнитный узел 3, который расположен таким образом, что его поле перпендикулярно электрическому полю между электродами 1, 2. Устройство содержит также источник питания 4 и узел 5 подачи гелия в межэлектродную область. Электроды 1, 2 изготовлены из любого токопроводящего материала, в том числе графита.

Способ реализуется следующим образом.

В межэлектродное пространство осуществляют подачу гелия из узла 5 для подачи гелия при давлении (34)104 Па, затем на плазму дугового разряда между электродами 1, 2 воздействуют перпендикулярным магнитным полем с индукцией 0,010,9 Тл, при давлении гелия (34)104 Па, напряжении порядка 2035 В, токе 2030 А и межэлектродном расстоянии 35 мм. Затем меняют полярность дугового разряда с периодом 0,12 с и воздействуют на ионы, образовавшиеся в межэлектродном пространстве лоренцевой силой, посредством которой осуществляют “закручивание” отдельных ионов и, в конечном итоге, образование конгломератов в виде нанотрубок диаметром 230 нм и длиной до 100 нм, которые, в частности, могут быть и графитовыми.

Воздействие на переменное электрическое поле магнитным полем, вектор индукции которого перпендикулярен вектору напряженности электрического поля в заданных диапазонах изменения величин магнитных и электрических параметров, позволяет управлять процессом детерминированного образования нанотрубок одинаковых диаметров от нескольких десятков нанометров и менее.

Таким образом применение предложенного способа получения нанотрубок обеспечивает управляемое детерминированное образование нанотрубок одинаковых диаметров от 2 до 30 нм.

Формула изобретения

Способ получения нанотрубок, включающий термическое распыление электрода в плазме дугового разряда, горящего в атмосфере гелия, отличающийся тем, что на плазму дугового разряда воздействуют перпендикулярным магнитным полем индукцией 0,010,9 Тл, при давлении гелия (34)104 Па, напряжении 2035 В, токе 2030 А и межэлектродном расстоянии 35 мм, затем меняют полярность дугового разряда с периодом 0,12 с.

РИСУНКИ

Рисунок 1

MM4A - Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 21.11.2006

Извещение опубликовано: 27.01.2008        БИ: 03/2008




 

Похожие патенты:

Изобретение относится к электронной технике и может быть использовано в производстве газоразрядных индикаторных панелей (ГИП)

Изобретение относится к области получения высокоэффективных пленок для полевых эмиттеров электронов, которые могут быть использованы для создания плоских дисплеев, в электронных микроскопах, СВЧ-электронике, источниках света и ряде других приложений

Изобретение относится к технологии изготовления микроканальных пластин с повышенными коэффициентом усиления, отношением сигнал/шум, разрешающей способностью и может быть использовано в производстве МКП

Изобретение относится к приборам тлеющего заряда с холодным катодом, в частности к газоразрядным индикаторным панелям постоянного тока и методам их изготовления

Изобретение относится к электротехнике и электронной технике, в частности к изготовлению микроканальной пластины, и может быть использовано при изготовлении волоконно-оптических пластин

Изобретение относится к области электротехники и к электронной технике, в частности к изготовлению микроканальной пластины, и может быть использовано при изготовлении волоконно-оптических пластин
Изобретение относится к области газоразрядной техники и может быть использовано при разработке и производстве газоразрядных индикаторных панелей (ГИП) переменного тока

Изобретение относится к области получения высокоэффективных пленок для полевых эмиттеров электронов, которые могут быть использованы для создания плоских дисплеев, в электронных микроскопах, СВЧ-электронике, источниках света

Изобретение относится к технике нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке

Изобретение относится к технике нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке

Изобретение относится к машиностроению и металлургии твердых сплавов, в частности, может быть использовано для твердосплавного металлорежущего инструмента с градиентом свойств в поперечном сечении изделия

Изобретение относится к области нанесения защитных коррозионно-стойких специальных покрытий на изделия, изготовленные из стали
Изобретение относится к области осаждения диэлектрических пленок с включениями кристаллической фазы на металлические поверхности с малым радиусом кривизны и может найти применение при изготовлении различных инструментов, в частности, для использования в медицине

Изобретение относится к области нанесения покрытий на детали машин с помощью электродугового разряда в атмосфере химически активных газов и может быть использовано в машиностроении, космостроении и автомобилестроении

Изобретение относится к области нанесения покрытий, в частности к нанесению покрытий испарением и конденсацией в вакууме, и может быть использовано в инструментальном производстве для получения износостойких покрытий на режущем инструменте
Изобретение относится к области получения функциональных покрытий, стойких к износу, и способам их получения на поверхности изделия и может быть использовано в машиностроении для упрочнения деталей машин и механизмов, изготовления деталей современных высокофорсированных двигателей, нанесения износостойкого покрытия на стержни клапанов и поршневые кольца

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбиностроении для защиты пера рабочих лопаток компрессора и турбины от солевой коррозии, пылевой и капельно-ударной эрозии при температурах до 550С
Наверх