Способ землякова н.в. интенсификации реактивной тяги прямоточно-эжекторного ракетоносителя

 

Изобретение относится к ракетно-тактическому и ракетно-космическому оружию, а также к гражданским ракетно-космическим аппаратам. Сущность изобретения заключается в том, что во время старта и на маршевой траектории прямоточно-эжекторного ракетоносителя создают два эжектирующих и один эжектируемый потоки, причем эжектируемый поток и один эжектирующий встречно закручены и контактируют между собой в режиме противотока, что приводит к интенсификации дожигания продуктов реактивного топлива в атмосферном кислороде. Технический результат изобретения состоит в повышении кпд ракетоносителя. 2 ил.

Изобретение относится к ракетно-тактическому и ракетно-космическому оружию, а также к гражданским ракетно-космическим аппаратам, а более конкретно к способу получения реактивной тяги прямоточно-эжекторным ракетоносителем ракет тактического действия и, кроме того, может быть использовано для создания реактивной тяги ракетно-космическими аппаратами для вывода как боевых, так и гражданских аппаратов.

Известны способы создания реактивной тяги прямоточно-реактивными двигателями (ПВРД) и ракетно-прямоточными двигателями (РПД). В прямоточных воздушно-реактивных двигателях (ПВРД) реактивная тяга создается за счет начальной скорости, полученной ракетой от какого-либо другого двигателя, а дальнейшее движение поддерживается за счет реактивной силы, обусловленной увеличенной скоростью отбрасываемых частиц продуктов горения из рабочей камеры ПВРД [1], [2].

Для реализации такого способа создают один эжектирующий поток, сплошной в сечении, полученный от одной или нескольких форсунок впрыскивающих топливо, который охвачен кольцевым в сечении эжектируемым потоком.

Недостатком такого способа создания реактивной тяги с помощью ПВРД является неспособность его к самостоятельному старту, т.к. для надежного запуска ПВРД необходимо разогнать летательный аппарат (ракету) до определенной скорости.

В ракетно-прямоточных двигателях (РПД) способ создания суммарной реактивной тяги аппарата на маршевой траектории создается по аналогии с ПВРД, но при этом в некоторых конструкциях обеспечивают возможность самостоятельного старта аппарата за счет встроенного в конструкцию дополнительного ракетного двигателя. В таком способе РПД, так же как и в способе ПВРД, создают один эжектирующий поток, сплошной в сечении от одного сопла или от нескольких, близко совмещенных друг с другом, который охватывается одним эжектируемым, кольцевым в сечении потоком [3].

Недостатком создания реактивной тяги способами РПД и ПВРД является наличие лишь одного эжектирующего потока.

Наиболее близким к заявляемому по технической сущности способом, выбранным в качестве прототипа, является способ создания реактивной тяги группой тактических ракет прямоточно-эжекторного ракетоносителя (ПЭР)[4].

В этом способе для создания суммарной реактивной тяги создают первый, расположенный вдоль геометрической оси, сплошной в сечении эжектирующий поток высокотемпературных газов от двигателей центрального изделия, вокруг которого с кольцевым зазором создают второй, осесимметричный первому и кольцевой в сечении эжектирующий поток высокотемпературных газов, получаемый от двигателей периферийных изделий, а между первым и вторым потоками получают третий, кольцевой в сечении, осесимметричный первому и второму эжектируемый и закрученный поток атмосферного воздуха, используемого как дополнительное рабочее тело.

Недостатком такого способа является то, что при большой скорости движения первого, второго и третьего потоков в осевом направлении происходит неполное дожигание продуктов реактивного топлива от первого и второго потоков, что не дает возможности получения максимальной реактивной тяги.

Задача, на решение которой направлено изобретение, состоит в увеличении реактивной тяги и повышение кпд ракетоносителя.

Это достигается тем, что в заявляемом способе создания реактивной тяги прямоточно-эжекторным ракетоносителем, при котором в хвостовой части ракетоносителя создают первый, расположенный вдоль геометрической оси, сплошной в сечении эжектирующий поток высокотемпературных газов от двигателей центрального изделия, вокруг которого с кольцевым зазором создают второй, осесимметричный первому и кольцевой в сечении, эжектирующий поток высокотемпературных газов, а между первым и вторым потоками получают третий, кольцевой в сечении, осесиметричный первому и второму эжектируемый и закрученный поток атмосферного воздуха, используемого как дополнительное рабочее тело, при этом у второго потока изменяют направление вектора реактивной тяги от каждого периферийного двигателя на угол от одного до тридцати угловых градусов, относительно оси каждого двигателя периферийных изделий, создавая закрученное в виде спирали направление истечения высокотемпературных газов и, причем встречно вращению третьего, эжектируемого потока.

Сущность изобретения поясняется схемами, где на фиг.1 изображена схема взаимодействия двух эжектирующих и одного эжектируемого потоков в осевом сечении ракетоносителя. На фиг.2 изображена схема направлений взаимодействующих между собой двух эжектирующих и одного эжектируемого потоков видимых по сечению А-А фиг.1.

При работе прямоточно-эжекторного ракетоносителя, вдоль его геометрической оси 1 создают первый, сплошной в сечении, эжектирующий поток 2 высокотемпературных газов от двигателей центрального изделия 3. Вокруг потока 2 создают второй эжектирующий поток 4 от двигателей периферийных изделий 5. И между первым и вторым потоками получают третий эжектируемый и закрученный поток 6. При этом у второго потока 4 от каждого двигателя периферийных изделий 5 изменяют направление вектора тяги Ft4 на угол относительно оси каждого периферийного двигателя и создают ему закрученное направление движения в виде спирали 7 по периметру потока 4, при этом общий (суммарный) вектор тяги Ft2° ракетоносителя остается осесимметричным и возрастает до значения Ft2°’.

Реализация такого способа позволит осуществлять наиболее рациональное контактирование закрученного эжектируемого потока 6 атмосферного воздуха 8 с высокотемпературными эжектирующими потоками, незакрученным потоком 2 и закрученным потоком 4. При этом закрутка эжектирующего поток 4 относительно закрутки эжектируемого потока 6 осуществляется в режиме противотока. А такой режим обеспечивает более полное дожигание продуктов реактивного топлива и, таким образом, позволяет получать увеличение суммарной реактивной тяги до величины Ft’. Более того, встречное вращение эжектируемого потока 6 и эжектирующего потока 4 позволяет стабилизировать полет ракетоносителя и исключить его вращение вокруг продольной геометрической оси. Кроме того, в трубчатых конструктивных системах ракетоносителей с двумя эжектирующими потоками, как и у прототипа и заявляемом способе, когда нагнетаемый скоростным напором в трубчатой полости воздух атмосферы почти полностью выгорает в камере дожигания, что обеспечивает большое понижение давления (вакуумирование) в объеме камеры дожигания. А это обстоятельство, в свою очередь, обеспечивает дополнительное ускорение трубчатой системе в стремлении выравнить давление, путем налета (наезда) на свежие объемы воздуха для заполнения создаваемого вакуума.

Источники информации

1. Космодемьянский А.А. Константин Эдуардович Циолковский. - М.: Наука, 1976, с.59 и 60.

2. Уманский С.П. Реальная фантастика. - М.: Московский рабочий, 1985, с.147-149.

3. Орлов Б.В., Мзинг Г.Ю., Рейдель А.Л., Степанов М.Н., Топчеев Ю.И. Основы проектирования ракетно-прямоточных двигателей. - М.: Машиностроение, 1967, с.6-14.

4. Патент России № 2181849 от 27.04.2002.

Формула изобретения

Способ создания реактивной тяги в прямоточно-эжекторном ракетоносителе, включающий создание в хвостовой части ракетоносителя первого, расположенного вдоль геометрической оси, эжектирующего потока высокотемпературных газов от реактивных двигателей центрального изделия, вокруг которого с кольцевым зазором создают второй, осесимметричный первому и кольцевой в сечении, эжектирующий поток высокотемпературных газов от реактивных двигателей периферийных изделий, а между первым и вторым потоками получают третий, кольцевой в сечении, осесимметричный первому и второму, эжектируемый и закрученный поток атмосферного воздуха, используемого как дополнительное рабочее тело, отличающийся тем, что у второго потока изменяют направление вектора реактивной тяги от каждого периферийного реактивного двигателя на угол от одного до тридцати угловых градусов относительно оси упомянутого двигателя и создают закрученное в виде спирали направление истечения высокотемпературных газов, встречное вращению третьего, эжектируемого потока.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к оборонной технике, в частности к мобильным зенитным ракетным комплексам (ЗРК), и может быть использовано для организации противовоздушной обороны войск и военных объектов от поражения средствами воздушного нападения (СВН) противника

Изобретение относится к военной технике и может быть использовано для конструирования безоткатных орудий

Изобретение относится к области военной техники и может быть использовано для вооружения надводных кораблей ВМФ, наземных объектов

Изобретение относится к вооружению и может быть использовано при хранении, транспортировки и запуске ракет

Изобретение относится к ракетной технике и может быть использовано в комплексах ракетного оружия надводных кораблей

Изобретение относится к военной технике и может быть использовано при конструировании гранатометов

Изобретение относится к самоходным установкам реактивной системы залпового огня

Изобретение относится к стационарным пусковым устройствам для космических ракет с различными координатами точек их установки в средней и нижней частях корпуса в горизонтальной плоскости при постоянном расстоянии между ними по высоте

Изобретение относится к военной технике, в частности к корабельным пусковым установкам (ПУ) вертикального пуска

Изобретение относится к военной технике, в частности к пусковым установкам вертикального пуска

Изобретение относится к способам и средствам для получения тяги и может быть использовано в конструкциях двигателей различного назначения

Изобретение относится к транспортному машиностроению, в частности к воздушно-реактивным двигателям, и может быть использовано для установки на летательных аппаратах

Изобретение относится к двигателям летательных аппаратов, в частности к двигателям небольших беспилотных летательных аппаратов
Изобретение относится к области машиностроения, в частности к авиастроению и двигателестроению, а именно к летательным аппаратам
Изобретение относится к области машиностроения, в частности к авиастроению и двигателестроению, а именно к летательным аппаратам

Изобретение относится к авиастроению, а именно к двигателестроению, и может быть использовано для замены существующих прямоточных воздушно-реактивных двигателей (ПВРД)

Изобретение относится к устройствам, используемым в качестве двигателей летательных аппаратов, таких как самолеты, воздушно-космические аппараты, а также различные ракеты

Изобретение относится к машиностроению, преимущественно к энергосиловым устройствам для создания тяги и обеспечения движения транспортных средств различного назначения
Наверх