Дуговой генератор газоразрядной плазмы с холодным полым катодом


H05H1/24 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

 

Изобретение относится к технике получения низкотемпературной плазмы в больших вакуумных объемах. Сущность: другой генератор газоразрядной плазмы состоит из вакууумной камеры-анода и полного цилиндрического холодного катода, помещенного в аксиальное магнитное поле. Внутри полого катода размещено инициирующее дугу поджигающее устройство, а на торце катода, обращенного к аноду, расположен дугогаситель. Технический результат: увеличение времени непрерывной работы дугового генератора газоразрядной плазмы, в том числе при работе с химически активными газами. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технике получения низкотемпературной плазмы в больших вакуумных объемах и может быть использовано для формирования поверхностных протяженных твердых диффузионных слоев в металлах и сплавах (азотирование, цементация и др.), ионно-плазменного ассистирования при нанесении упрочняющих и защитных покрытий, плазменно-иммерсионной ионной имплантации, а также ионно-плазменного синтеза покрытий из продуктов разложения сложномолекулярных газов.

Известны генераторы на основе высокочастотного разряда [1] и генераторы с использованием тлеющего разряда [2], позволяющие создавать низкотемпературную газовую плазму в больших объемах. Однако такие генераторы имеют низкую энергетическую эффективность вследствие высокого напряжения горения и функционируют при относительно высоких давлениях газа.

Наиболее близким к предлагаемому изобретению аналогом, взятым за прототип, является генератор [3] для создания низкотемпературной газоразрядной плазмы, в котором в качестве полого анода большого размера используется технологическая вакуумная камера, а в качестве катода - комбинированный катод, состоящий из термокатода (вольфрамовая спираль) и окружающего его полого цилиндрического катода, электрически соединенного с одним из выводов термокатода, помещенных в аксиальное магнитное поле. Катодный узел располагается на одной из стенок вакуумной камеры, а напуск рабочего газа производится через катодную полость.

В таком генераторе при подаче питания к накаленному катоду, постоянного напряжения к разрядному промежутку и установлении необходимого расхода рабочего газа между катодным узлом и анодом зажигается и горит несамостоятельный дуговой разряд низкого давления. Данный тип разряда инициируется электронами, испускаемыми накаленным катодом и ускоренными в катодном падении потенциала. Основным недостатком такого генератора является ограниченный срок службы накаленного катода при больших токах разряда, не превышающий нескольких десятков часов в атмосфере реактивных газов (N2) и нескольких десятков минут в атмосфере активных газов (О2, СН4) вследствие окисления вольфрама и бомбардировки катода ионами.

Техническим результатом предлагаемого изобретения является увеличение времени непрерывной работы дугового генератора газоразрядной плазмы, в том числе при работе с химически активными газами.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном устройстве, состоящем из вакуумной камеры-анода и полого цилиндрического холодного катода, помещенного в аксиальное магнитное поле, согласно изобретению внутри полого катода размещено инициирующее дугу поджигающее устройство, а на торце катода, обращенного к аноду, расположен дугогаситель.

Кроме того, особенность заявленного генератора плазмы заключается в том, что дугогаситель выполнен в виде стакана с центральным отверстием в своем основании, при этом диаметр центрального отверстия относится к диаметру полого катода как 1:3.

В генераторе плазмы для инициирования и поддержания газового дугового разряда на внутренней поверхности водоохлаждаемого полого катода принудительно формируется катодное пятно, локализованное в максимуме тангенциальной составляющей магнитного поля.

На чертеже схематично представлен пример конструкции предлагаемого генератора плазмы. Генератор состоит из водоохлаждаемого полого катода 1 (диаметром 100 мм и длиной 200 мм), помещенного в продольное магнитное поле короткой магнитной катушки 2. Величина магнитного поля варьируется в пределах 0-2,510-2 Тл. Рабочий газ с расходом 30-100 мПам3с-1 напускается в катодную полость через отверстие 3. Для инициирования катодного пятна используется поджигающее устройство 4 на основе разряда по поверхности диэлектрика. Катодная полость установлена через изолятор 5 на заземленную вакуумную камеру размерами 600600600 мм, которая является анодом 6. На торцевой стороне полого катода под плавающим потенциалом установлен дугогаситель 7, выполненный в виде стакана с центральным отверстием в своем основании, при этом диаметр центрального отверстия относится к диаметру полого катода как 1/3. В вакуумной камере на подложкодержателе размещены обрабатываемые детали 8.

Генератор газоразрядной плазмы работает следующим образом. При приложенных напряжениях к поджигающему устройству 4 (Uп) и разрядному промежутку Uр между полым катодом 1 и полым анодом 6 (вакуумная камера) на внутренней поверхности полого катода инициируется катодное пятно и в полом катоде появляется первичная плазма, через которую анодный потенциал проникает в катодную полость, способствуя зажиганию основного дугового разряда между полым катодом и полым анодом. В скрещенных электрическом поле катодного падения потенциала и продольном магнитном поле, создаваемом магнитной катушкой 2, катодное пятно движется по круговой орбите в максимуме магнитного поля по внутренней поверхности полого катода, причем скорость вращения пятна повышается при увеличении магнитного поля. Для того чтобы затруднить выход катодного пятна на торец полого катода и развитие разряда по поверхности изолятора 5, на торце полого катода установлен находящийся под плавающим потенциалом дугогаситель 7. Электроны, испускаемые катодным пятном и ускоренные в катодном падении потенциала, ионизируют рабочий газ, а продукты эрозии катода (микрокапли, атомы и незамагниченные ионы материала катода) оседают на противоположной от катодного пятна стороне полого катода. Это приводит к уменьшению эрозии катода и увеличению времени непрерывной работы генератора плазмы. Перемещение магнитной катушки вдоль полого катода позволяет менять место привязки катодного пятна дуги и рационально использовать внутреннюю поверхность полого катода при работе генератора плазмы за счет равномерного износа катода. Вторичные электроны, выбитые ионами, бомбардирующими внутреннюю поверхность катодной полости, усиливают ионизационные процессы в полом катоде и обеспечивают горение разряда при низких напряжениях и давлениях газа. Проникновению нейтральных частиц материала катода в анодную полость препятствует также механический барьер, образованный дугогасителем, диаметр центрального отверстия которого значительно меньше внутреннего диаметра полого катода. Для некоторой части быстрых ионов металла, движущихся в плазме, имеется некоторая вероятность выхода в анодную полость в результате двух процессов - перезарядки и потери импульса. Однако, как показывают расчеты, вероятность их проникновения в анодную полость не превышает вероятности выхода микрокапель вследствие большой длины свободного пробега быстрого иона, сравнимой с размерами полого катода. В результате испытаний за время работы генератора плазмы в течение t=120 мин (материал полого катода - нержавеющая сталь) было установлено, что при давлении рабочего газа аргона Р=310-1 Па, токе разряда I=90 А, напряжении горения разряда U=45 В и индукции магнитного поля В=0,01 Тл скорость эрозии катода на порядок меньше скорости эрозии вакуумной дуги согласно литературным данным [4]. Количество микрокапель на поверхности стеклянного образца, помещенного в вакуумную камеру (полый анод), на расстоянии 30 см от полого катода приведено в Таблице. При замене рабочего газа аргона на кислород наблюдается более стабильное горение разряда и меньшая скорость эрозии материала катода вследствие перехода горения дуги в режим с катодными пятнами первого рода. Дуговой генератор газоразрядной плазмы с холодным полым катодом испытывали в течение 70 ч непрерывной работы с использованием различных рабочих газов (Ar, N2, О2, СН4, С2Н2). Существенной эрозии внутренней поверхности катодной полости и заметного изменения параметров разряда не наблюдалось.

Источники информации

1. Setsuhara Y., Shoji Т., Sakawa Y. and Miyake S., Production of Inductively-Coupled Large-Diameter RF Plasmas Using Multiple Low-Inductance Antenna Units, Proc. Of 25-th Int. Conf. on Phenomena in Ionized Gases, 2001, Nagoya, Japan,Vl, p.19 - 20.

2. Лахтин Ю.М., Коган Я.Д., Шпис Г.-И., Бемер 3. Теория и технология азотирования. - М.: Металлургия, 1991, 320 с.

3. RU №2116707, МПК Н 05 Н 1/24,1998, №21.

4. Райзер Ю.П. Физика газового разряда. - М.: Наука, 1987, 592 с.

Формула изобретения

1. Дуговой генератор газоразрядной плазмы, состоящий из вакуумной камеры-анода и полого цилиндрического холодного катода, помещенного в аксиальное магнитное поле, отличающийся тем, что внутри полого катода размещено инициирующее дугу поджигающее устройство, а на торце катода, обращенного к аноду, расположен дугогаситель.

2. Дуговой генератор газоразрядной плазмы по п.1, отличающийся тем, что дугогаситель выполнен в виде стакана с центральным отверстием в своем основании, при этом диаметр центрального отверстия относится к диаметру полого катода как d=1/3 D, где d - диаметр центрального отверстия, D - диаметр полого катода.

РИСУНКИ

Рисунок 1

NF4A Восстановление действия патента Российской Федерации на изобретение

Извещение опубликовано: 20.10.2006        БИ: 29/2006




 

Похожие патенты:

Изобретение относится к электротехнике, предназначено для получения низкотемпературной плазмы и может быть использовано в физических экспериментах, плазмохимии, металлургии, а также установках по утилизации токсичных и бытовых отходов

Изобретение относится к микроволновым СВЧ-плазменным реакторам с увеличенным объемом плазмы и может быть использовано при производстве изделий электронной техники и др

Изобретение относится к технологии плазменной обработки материалов и изделий, в частности к электродуговым плазматронам, предназначенным для напыления порошковых материалов, включая тугоплавкие материалы, на поверхности изделий с целью получения покрытий различного функционального назначения

Изобретение относится к физике высокотемпературной плазмы и направлено на создание стационарной высокотемпературной плотной полностью ионизированной плазмы

Изобретение относится к способам беспроволочной передачи электрической энергии и может быть использовано в качестве средства передачи электрических зарядов без проводов

Изобретение относится к технике электрических газовых разрядов, создаваемых в виде канала плазмы, сжатого магнитным полем собственного электрического тока, и применяемых в рентгеновской микролитографии, нейтронографии, в исследованиях биологических микрообъектов и в других областях науки и техники

Изобретение относится к технике электрических газовых разрядов, создаваемых в виде канала плазмы, сжатого магнитным полем собственного электрического тока, и применяемых в рентгеновской микролитографии, нейтронографии, в исследованиях биологических микрообъектов и в других областях науки и техники

Изобретение относится к устройствам для генерации плазмоидов, близких по своим свойствам к шаровым молниям и имеющих возможность автономного существования в свободном пространстве

Изобретение относится к конструкции электродуговых плазмотронов с межэлектродными вставками (МЭВ), предназначенных для нанесения покрытий или плазменной закалки в труднодоступных местах, например для нанесения защитных покрытий на внутренние поверхности труб, диаметр которых в свету соизмерим с дистанциями, принятыми для напыления (100-300 мм)

Изобретение относится к клапанам и предназначено преимущественно для быстрого и точного регулирования газовой среды накопительных камер инжекторов холодной плазмы, в реакторах для синтеза легких ядер, при давлении газа на входе клапана не более 10 мм ртутного столба

Изобретение относится к области ускорительной техники и может быть использовано для формирования высокоэнергетичных пучков многозарядных ионов различных элементов в установках для ионной имплантации, а также в качестве инжекторов ускорителей тяжелых ионов

Изобретение относится к плазменной технике, а более конкретно к устройствам, предназначенным для получения интенсивных пучков ионов, которые могут использоваться в ионно-лучевых технологиях

Изобретение относится к устройствам электронно-ионной технологии, в частности к газоразрядным устройствам для ионной очистки и травления материалов, и может найти применение при изготовлении элементной базы микроэлектроники из многокомпонентных материалов

Изобретение относится к ионным источникам для циклотронов (внутренним, закрытого типа) и может использоваться в циклотронной технике

Изобретение относится к ионным источникам с закрытым дрейфом электронов, которые могут быть использованы в качестве двигателей, в частности, для космических кораблей, либо в качестве ионных источников для промышленных операций, например нанесение покрытий напыления в вакууме

Изобретение относится к ионным источникам и может быть использовано в масс-спектрометрии для элементного анализа жидкостей и газов, в ионной технологии и т.д

Изобретение относится к технике получения импульсных мощных ионных пучков

Изобретение относится к ионно-плазменной технике, в частности к источникам ионов с замкнутым дрейфом электронов, которые могут быть использованы при конструировании источников, формирующих ленточные пучки ионов инертных и химически активных газов

Изобретение относится к технике получения низкотемпературной плазмы в больших вакуумных объемах

Наверх