Устройство питания и управления излучателем нейтронов

 

Использование: при разработке приборов для геофизических исследований скважин. Технический результат: повышение надежности схемы запуска нейтронной трубки. Устройство содержит последовательно соединенные автогенератор управляемых импульсов, инвертор напряжения, разрядник и накопительный конденсатор, выход которого соединен с излучателем нейтронов. В устройство дополнительно введены датчик разряда, содержащий трансформатор тока с одновибратором, и блок первичного запуска датчика разряда, которые обеспечивают подачу на генератор нейтронов импульсного напряжения с нормированной амплитудой независимо от сбоев в работе устройства. 1 ил.

Изобретение относится к области разработки приборов для геофизических исследований скважин, в частности скважинных генераторов нейтронов.

Известен малогабаритный генератор нейтронов ИГН - 1М (Геофизическая аппаратура, "Недра", Ленинградское отделение, вып.43, 1970 г., с.142-146).

Известна аппаратура импульсного нейтрон - нейтронного каротажа ИНК-7 (Киевский опытно-экспериментальный завод геофизического приборостроения, 1987 г. Структурная схема прибора скважинного ИНК-7 АХД 43.1525.012ТО, блок Г).

Управление запуском нейтронной трубки в известных устройствах осуществляется поступающим от наземного блока управляющим импульсом, который усиливается усилителем и подается на управляемый разрядник, формирующий импульс запуска нейтронной трубки.

Формирование импульса запуска осуществляется посредством каскадного усилителя коммутатора на управляемых разрядниках с накопительным конденсатором и импульсными трансформаторами.

Аналогичную схему запуска нейтронной трубки имеет генератор нейтронов скважинный импульсный ИГН-3-36-120/40 (г.Уфа, ВНИИНефтепромгеофизика и ПО ТатНефтегеофизика, 1985 г.), взятый за прототип.

Схема запуска прототипа содержит последовательно соединенные автогенератор управляющих импульсов, инвертор напряжения, включающий в себя силовые ключи, силовой трансформатор и выпрямитель с учетверителем напряжения, управляемый разрядник и накопительный конденсатор.

Описанные выше аналоги и прототип имеют общий недостаток, а именно низкую надежность схемы запуска нейтронной трубки. Это обусловлено тем, что большие токи (до 50 А), протекающие в схеме запуска нейтронной трубки, в процессе эксплуатации устройств оплавляют электроды управляемого разрядника. Нарушенные контакты приводят к сбою в работе разрядника - происходит либо несрабатывание устройства (пропуск импульса), либо наоборот - его самопроизвольное срабатывание ("газование"). Поскольку схема не имеет порога ограничения заряда накопительного конденсатора, в последнем из-за сбоя в работе разрядника накапливается избыточный заряд. Избыточный заряд может привести к пробою в излучателе, а также за счет высокого потенциала - к пробою самого накопительного конденсатора.

Задачей настоящего изобретения является повышение надежности схемы запуска нейтронной трубки.

Поставленная задача решается следующим образом. В устройстве питания и управления излучателя нейтронов, содержащем последовательно соединенные автогенератор управляющих импульсов, инвертор напряжения, разрядник и накопительный конденсатор, выход которого соединен с излучателем нейтронов, а также схему управления разрядником, выход которого соединен со входом разрядника, дополнительно введены датчик разряда, содержащий трансформатор тока с одновибраторном, и блок первичного запуска, при этом выход инвертора напряжения соединен с первым входом датчика разряда, выход блока первичного запуска соединен со вторым входом датчика разряда, первый выход датчика разряда соединен со входом разрядника, а второй выход датчика разряда соединен с первым входом автогенератора управляющих импульсов.

Предложенное схемное решение имеет следующее технические преимущества по сравнению с прототипом:

- наличие датчика разряда создает порог ограничения заряда накопительного конденсатора, обеспечивая тем самым подачу на генератор нейтронов импульсного напряжения с нормированной амплитудой независимо от сбоев в режиме работы разрядника;

- одновибратор в схеме датчика разрядника дозирует время и величину зарядки накопительного конденсатора до заданного значения, необходимого для запуска нейтронной трубки, исключая тем самым пробой накопительного конденсатора и соответственно выход из строя излучателя нейтронов и нейтронной трубки;

- трансформатор в схеме датчика разряда преобразует мощный разрядный ток, возникающий в момент разрядки накопительного конденсатора, в импульс, управляющий работой автогенератора и обеспечивающий безаварийную работу датчика разряда и всего устройства питания и управления излучателя нейтронов в целом;

- наличие блока первичного запуска обеспечивает включение в работу датчика разряда в момент включения устройства питания и управления излучателя нейтронов.

Предложенное техническое решение просто в реализации, не требует для изготовления специальных материалов и комплектующих элементов.

Заявителю не известны технические решения, содержащие сходные признаки, отличающие заявленное техническое решение от прототипа.

На чертеже показана блок-схема устройства питания и управления излучателем нейтронов.

Устройство питания и управления излучателем нейтронов содержит последовательно соединенные автогенератор управляющих импульсов 1, инвертор напряжения 2, датчик разряда 6, разрядник 9 и накопительный конденсатор 10.

Инвертор напряжения 2 включает в себя силовые ключи 3, силовой трансформатор 4 и выпрямитель-учетверитель напряжения 5, а датчик разряда 6 включает в себя трансформатор тока 7 и одновибратор 8. Датчик разряда 6 включается в работу блоком первичного запуска 11, а разрядник 9 запускается внешним сигналом через схему управления 12.

Устройство питания и управления излучателем нейтронов работает следующим образом.

По сигналу от оператора с наземного блока в первый момент подаются управляющие импульсы на автогенератор 1 и блок первичного запуска 11. Последний включает одновибратор 8 в режим зарядки накопительного конденсатора 10. Автогенератор 1 при этом вырабатывает импульс запуска, который, поступая на инвертор напряжения 2, управляет силовыми ключами 3. Силовые ключи 3 нагружены на силовой трансформатор 4, повышающий поступающее напряжение с коэффициентом Ктр. Повышенное напряжение с выхода трансформатора 4 выпрямляется и учетверяется выпрямителем-учетверителем 5. С выхода инвертора напряжения 2 выпрямленное и учетверенное напряжение транзитом через датчик разряда 6 и разрядник 9 поступает на накопительный конденсатор 10, заряжая его. Накопительный конденсатор 10 заряжается в течение времени Тизм. В это время по внешнему сигналу запуска включается схема управления разрядником 12, которая обеспечивает срабатывание разрядника 9 по истечении времени Тизм и соответственно разряд накопительного конденсатора 10. Ток разряда посредством разрядника 9 формирует импульс запуска нейтронной трубки. Одновременно этим же импульсом в датчике разряда 6 формируется управляющий сигнал автоматического запуска одновибратора 8 (уже без вмешательства блока первичного запуска 11).

При этом со второго выхода датчика разряда 6 на первый вход автогенератора 1 поступает сигнал, разрешающий новый цикл преобразования напряжения и зарядки-разрядки накопительного конденсатора 10. Далее циклы работы устройства повторяются.

В случае несрабатывания разрядника 9 по какой-либо причине условие для запуска одновибратора 8 не наступает, и напряжение на накопительном конденсаторе 10 незначительно падает. При следующем разрешающем импульсе запуска система запускается, и описанный выше цикл работы устройства повторяется.

В случае неуправляемого разряда ("газования") разрядника 9 последний заменяется.

Таким образом, присутствующий в устройстве питания и управления излучателя нейтронов датчик разряда конденсатора 6 обеспечивает нормирование времени и величину заряда накопительного конденсатора 10, что в свою очередь обеспечивает безаварийную работу излучателя нейтронов, повышая надежность устройства и времени его эксплуатации.

Оригинальность и простота схемного решения обеспечивают практическую доработку существующих устройств данного типа (в частности прототипа), не изменяя габаритных размеров прототипа, что существенно для скважинных приборов.

Формула изобретения

Устройство питания и управления излучателем нейтронов, содержащее последовательно соединенные автогенератор управляемых импульсов, инвертор напряжения, разрядник и накопительный конденсатор, выход которого соединен с излучателем нейтронов, а также схему управления разрядником, выход которой соединен со входом разрядника, отличающееся тем, что оно дополнительно снабжено датчиком разряда, содержащим трансформатор тока с одновибратором, и блоком первичного запуска, при этом выход инвертора напряжения соединен с первым входом датчика разряда, выход блока первичного запуска соединен со вторым входом датчика разряда, первый выход датчика разряда - с первым входом разрядника, а второй выход датчика разряда соединен с первым входом автогенератора управляющих импульсов.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов

Изобретение относится к области изготовления титано-тритиевой мишени, применяемой в импульсной вакуумной нейтронной трубке, которая предназначена для генерации потоков нейтронов и используется в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа

Изобретение относится к области экспериментальной ядерной физики, а именно к источникам нейтронов для экспериментальных исследований, и может быть использовано для повышения ресурса и снижения радиационной опасности электроядерной установки промежуточной энергии (до 100 МэВ)

Изобретение относится к области ядерной физики, более конкретно к источникам нейтронов для ядерных исследований и трасмутации радиоактивных отходов

Изобретение относится к ядерной технике и может быть использовано при изготовлении протяженных источников ионизирующего излучения на основе радиоактивных элементов (трансплутониевых - ТПЭ, редкоземельных РЗЭ, либо других)

Изобретение относится к ядерной технике и позволяет повысить безопасность при производстве и эксплуатации источника путем увеличения механического сцепления

Изобретение относится к генераторам нейтронного пучка

Изобретение относится к области плазменной техники и управляемого термоядерного синтеза и может быть использовано для получения высокотемпературной плазмы с целью изучения ее свойств, а также генерации нейтронного излучения

Изобретение относится к области устройств для создания пучков меченых нейтронов, а именно, отпаянных нейтронных генераторов и может быть использовано в системах оперативного неразрушающего дистанционного анализа сложных химических веществ и в ядерно-физических установках, где требуется регистрация высокоинтенсивных потоков заряженных частиц

Изобретение относится к области прикладной ядерной геофизики, а более конкретно к группе геофизических методов, предназначенных для количественной оценки содержания радиационно-активных элементов в естественном залегании, и может быть использовано в рудной и газонефтяной геологии и геофизике, горной промышленности и других областях

Изобретение относится к измерению пористости образования
Изобретение относится к области ядерной геофизики и может быть использовано при геологической разведке алмазоносных месторождений для обнаружения алмазной породы (алмазов) в стенке (пристенном пространстве) разведочной скважины

Изобретение относится к области промысловой геофизики, а более конкретно к группе ядерно-геофизических методов исследования природных сред, и может быть использовано для геологических разрезов рудных, угольных, нефтяных, газовых и др

Изобретение относится к области ядерной геофизики, а именно к группе геофизических методов, предназначенных для определения характера насыщения коллекторов в условиях осолоненных пластовых вод по нейтронным характеристикам природных сред, и может быть использовано в газонефтяной геологии

Изобретение относится к области промысловой геофизики, в частности к методам нейтрон-нейтронного и гидродинамического каротажа коллекторов нефти и газа, осложненных зонами проникновения промывочной жидкости

Изобретение относится к области геофизических исследований скважин с применением источников нейтронного излучения и может быть использовано в геологии, нефтяной и газовой промышленности для бескернового изучения геологических разрезов буровых скважин, в том числе выявления пластов с минерализованным флюидом и соленосных пластов (KCl, NaCl и т.д.)

Изобретение относится к области ядерной физики и может быть использовано для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом
Наверх