Плазменный электронный источник ленточного пучка

 

Использование: в области плазменной техники, при разработке электронно-лучевых устройств и в электронно-лучевой технологии, экспериментальной физике, плазмохимической технологии. Сущность изобретения: в известном электронном источнике, предназначенном для генерации непрерывного электронного пучка ленточной конфигурации и включающем цилиндрический полый катод с окном в боковой стенке, анод с эмиссионным окном, перекрытым металлической сеткой, ускоряющий электрод с окном для пропускания электронного пучка, внутренние торцевые стенки полого катода закрыты пластинами из термостойкого неорганического диэлектрика. Техническим результатом изобретения является повышение однородности электронного пучка по его поперечному сечению за счет снижения краевых максимумов плотности тока в пучке на его краях. 2 ил.

Изобретение относится к области плазменной техники и может быть применено при разработке электронно-лучевых устройств и использовано в электронно-лучевой технологии, экспериментальной физике, плазмохимической технологии.

Известны устройства, предназначенные для генерации ленточных электронных пучков путем эмиссии электронов из газоразрядной плазмы с протяженной границей (а.с. СССР № 764769). В этих устройствах плазма создается путем инициирования разряда в газе. Разряд, т.е. ток, в газе поддерживается напряжением, прикладываемым между электродами разрядной системы. Плазменная эмиссионная граница создается в пределах окна, выполняемого в одном из электродов разрядной системы. В электронно-ионном источнике с плазменным катодом, включающем протяженные катод, антикатод, плоский анод с эмиссионным окном, расположенный параллельно катоду и антикатоду, эмиссионное окно устроено вдоль зазора между катодом и антикатодом. Разряд зажигается в газе, напускаемом в зазор между электродами. Ускоряющее напряжение прикладывается между анодом и ускоряющим электродом. Указанный источник позволяет получать ленточный пучок электронов длиной 30 мм с энергией 5-10 кэВ при давлении газа в ускоряющем промежутке 1,310-2 Па - 1,310-1 Па. При увеличении длины электродов для увеличения ширины пучка, а также при увеличении давления газа источник не теряет работоспособности, однако ухудшается однородность пучка из-за появления локальных максимумов плотности тока вследствие возникновения локальных сгустков разрядной плазмы. Это, в свою очередь, обусловлено характером разряда и, в частности, характером движения эмитированных катодом электронов. Отсутствие осцилляции электронов с неизбежностью приводит к различию плотностей разрядного тока на разных участках катода. Улучшение однородности пучка может быть достигнуто организацией осцилляции электронов в разряде, например, наложением поперечного разрядному промежутку магнитного поля. Однако извлечение электронов поперек магнитного поля (Крейндель Ю.Е. Плазменные источники электронов. - М.: Атомиздат, 1977 г.) с неизбежностью приводит к их “сносу”, что вызывает новые проблемы с достижением однородности тока по сечению пучка.

Наиболее близким по технической сущности к предлагаемому изобретению является источник ленточного электронного пучка (пат. 38310052, США), содержащий цилиндрический полый катод с продольной щелью в боковой стенке, анод с эмиссионным окном, перекрытым металлической сеткой, ускоряющий электрод с окном для пропускания электронного пучка. Повышение однородности пучка в указанном электронном источнике достигается использованием разряда с полым катодом, в котором однородность плазмы обеспечивается многократной осцилляцией электронов. Вместе с тем, наличие у катодной полости торцевых стенок вызывает различие в скорости образования ионно-электронных пар вблизи этих стенок и в остальной части полости. Это, в свою очередь, проявляется в возрастании концентрации плазмы вблизи торцевых стенок полости и в наличии максимумов плотности тока по краям пучка.

Техническим результатом настоящего изобретения является дальнейшее повышение однородности электронного пучка по его поперечному сечению за счет снижения краевых максимумов.

Указанный результат достигается тем, что в известном источнике электронов, содержащем цилиндрический полый катод со щелью в боковой стенке, анод с эмиссионным окном, перекрытым металлической сеткой, ускоряющий электрод, внутренние торцевые стенки катодной полости закрыты пластинами термостойкого неорганического диэлектрика.

Схема предлагаемого источника электронов представлена на фиг.1, на фиг.2 - распределение линейной плотности J электронного тока по ширине пучка в отсутствии (1) и при наличии (2) керамических пластин (давление газа 5 Па, ускоряющее напряжение 3 кВ). Цилиндрический полый катод 1 содержит щель в стенке, обращенной к аноду 2, эмиссионное окно в котором перекрыто сеткой 3. Ускоряющий электрод 4 служит для ускорения электронов. Новым элементом по сравнению с прототипом являются керамические пластины 5, закрывающие внутренние торцевые стенки полости.

Источник работает следующим образом. Вакуумную камеру, на фланце которой установлен источник, откачивают до давления 1,3-13 Па. При необходимости указанный диапазон давлений достигается напуском газа в вакуумную камеру. Затем к катоду 1 и аноду 2 источника прикладывают напряжение от блока питания разряда, плавным повышением которого добиваются зажигания разряда. После этого подают напряжение между анодом 2 и ускоряющим электродом 4 от блока ускоряющего напряжения, повышением которого добиваются формирования электронного пучка необходимой энергии. Размещение керамических пластин 5 позволяет снизить максимумы плотности тока на краях пучка, как представлено на фиг.2. Физическая причина эффекта состоит в том, что наличие керамических пластин ослабляет интенсивность ионизационных процессов в катодной полости вблизи ее торцевых стенок за счет ослабления потока вторичных электронов из торцевых стенок и снижения их энергии и как следствие позволяет избежать появления максимумов плотности плазмы. Это, в свою очередь, снижает максимумы плотности тока на краях электронного пучка. Возможность нагрева диэлектрических пластин излучением плазмы и бомбардировкой быстрыми частицами объясняет, почему необходимо, чтобы они были выполнены из термостойкого неорганического диэлектрика (керамика, кварц).

Предлагаемый электронный источник позволяет получить электронный пучок шириной до 30 см с током до 1 А при линейной неоднородности не более 10% при газовых давлениях до 15 Па, что превышает возможности наиболее близкого аналога. Это расширяет возможности применения электронного источника. В частности, источник может быть использован для инициирования плазмохимической реакции в газовой фазе при осаждении однородных покрытий на подложке площадью до 1500 см2.

Формула изобретения

Плазменный электронный источник ленточного пучка, включающий в себя цилиндрический полый катод с продольной щелью в боковой стенке, анод с эмиссионным окном, перекрытым металлической сеткой, ускоряющий электрод, отличающийся тем, что внутренние торцевые стенки полости закрыты пластинами, выполненными из термостойкого неорганического диэлектрика.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к плазменной технике, а именно к катодам-компенсаторам на газообразных рабочих телах, и может быть использовано при разработке электрореактивных двигателей для нейтрализации ионного пучка, а также в технологических источниках ускоренных потоков для ионно-плазменной обработки поверхности материалов в вакууме

Изобретение относится к плазменной технике, а именно к накальным катодам-компенсаторам на газообразных рабочих телах, и может быть использовано при разработке электрореактивных двигателей для нейтрализации ионного пучка, а также в технологических источниках плазмы для ионноплазменной обработки поверхности материалов в вакууме

Изобретение относится к области сильноточных вакуумных электродуговых устройств

Изобретение относится к электроракетным двигателям и можеи использоваться при их конструировании

Изобретение относится к плазменной эмиссионной электронике, в частности к конструкции плазменных ионных и электронных эмиттеров непрерывного действия с большой поверхностью на основе объемного разряда с холодными электродами, и может быть использовано для термической обработки в вакууме: при спекании изделий из металлических порошков, пайке, закалке, а также в технологических процессах, например, обезгаживания деталей с последующей активизацией и нанесением покрытий, когда требуется комбинация электронных и ионных пучков, решаемая в едином цикле путем переключения полярности ускоряющего частицы напряжения

Изобретение относится к плазменной технике и может быть использовано при разработке электрореактивных двигателей и технологических источников ускоренных потоков для ионно-плазменной обработки поверхности материалов в вакууме

Изобретение относится к плазменной технике, а более конкретно к плазменным катодам-компенсаторам при использовании их в плазменных ускорителях типа УЗДП, УАС, ПИУ и др., работающих на агрессивных газообразных рабочих телах (О2, N2, С, углеводороды и др.)

Изобретение относится к плазменным катодам-компенсаторам на газообразных рабочих телах и может быть использовано в электроракетных двигателях для нейтрализации ионного пучка, а также в технологических источниках, например, в ускорителях с замкнутым дрейфом электронов и протяженной зоной ускорения (УЗДП), ускорителях с анодным слоем и узкой зоной ускорения (УАС), плазменно-ионных ускорителях (ПИУ) и т

Изобретение относится к способам управления током плазменных эмиттеров большой площади и может быть использовано в электронных и ионных источниках, генерирующих пучки с большим поперечным сечением

Изобретение относится к плазменной технике, а именно к катодам-компенсаторам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного пучка, а также в технологических источниках плазмы, предназначенных для ионно-плазменной обработки поверхностей материалов

Изобретение относится к области электрореактивных двигателей, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды

Изобретение относится к микроэлектронике и может быть использовано при производстве интегральных микросхем на активных и пассивных подложках и элементов дифракционной оптики на криволинейных поверхностях

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ. Технический результат - возможность наблюдения аномальной дисперсии в различных газах, причем вблизи узких спектральных линий поглощения в плазменно-пучковых разрядах. Способ определения аномальной дисперсии заключается в том, что на основе поперечного наносекундного плазменно-пучкового разряда с щелевым катодом создают двухслойную неоднородную плазменную среду с двухслойным распределением оптического показателя преломления, через которую наклонно пропускают широкополосное лазерное излучение со спектром вблизи спектральных линий поглощения плазмы, и после разложения с помощью спектрографа спектра лазера, прошедшего плазменный слой, на выходе спектрографа определяют аномальную дисперсию вблизи спектральных линий поглощения плазмы. 3 ил.

Изобретение относится к области оптической спектроскопии и может быть применено при разработке новых методов нестационарной оптической спектроскопии, позволяющих исследовать свойства неоднородной плазмы в области аномальной дисперсии. Технический результат изобретения - получение внутри плазменного волновода регулярной пространственной структуры оптического показателя преломления в спектральной области аномальной дисперсии вблизи длины волны, соответствующей узкой спектральной линии поглощения в плазме высокоскоростных волн ионизации. Лазерное излучение наносекундной длительности пропускают через плазменный волновод под углом к оптической оси волновода, где в узкой спектральной области аномальной дисперсии вблизи фиксированной спектральной линии поглощения плазмы создается распределение оптического показателя преломления с цилиндрическим профилем с максимумом показателя преломления вдоль границы и минимумом вдоль центра трубки. 6 ил.

Изобретение относится к области электротехники и может быть использовано в устройстве генерирования электронного луча. Техническим результатом является обеспечение возможности генерирования узкого электронного луча с малым диаметром в фокусе и высокой плотности мощности при одновременно простой конструкции и конфигурации устройства. Устройство содержит корпус (12), который ограничивает вакуумируемое пространство (13) и имеет отверстие для выхода электронного луча; впуск (16) для подачи рабочего газа в вакуумируемое пространство (13); плоский катод (14) и анод (15), которые расположены в вакуумируемом пространстве (13) и между которыми посредством прилагаемого электрического напряжения может создаваться плазма тлеющего разряда, при этом ионы из плазмы тлеющего разряда могут быть ускорены на поверхность катода (14). Технический результат достигается за счет того, что катод имеет первую часть (14a),состоящую из первого материала, которая образует центрально расположенную первую область поверхности катода (14), а также вторую часть (14b), состоящую из второго материала, которая образует вторую область поверхности катода (14), охватывающую первую область поверхности катода (14). Первый материал при воздействии на него ускоренных ионов может нагреваться до температуры, при которой электроны выходят из первого материала преимущественно за счет термоэлектронной эмиссии. 16 з.п. ф-лы, 5 ил.

Изобретение относится к области физики газового разряда и может быть применено при разработке новых устройств сильноточной электроники, позволяющих получать ленточные пучки ускоренных электронов и мощные наносекундные импульсы тока, в плазменной технологии, электронно-лучевой технологии, экспериментальной физике, в физике газового разряда, в физике и технике газовых лазеров, при разработке коммутаторов, импульсных источников тока наносекундной длительности, импульсных источников оптического излучения с высокой яркостью, большой излучающей поверхностью и высоким КПД, плазмохимической технологии, экспериментальной физике. Технический результат - получение протяженного однородного объемного разряда и существенное обострение импульсов напряжения и тока и увеличение величины разрядного тока более чем на порядок при ограничении разрядной области. Устройство для формирования плазменно-пучкового разряда включает разрядную камеру и электродную систему из протяженных электродов. Разрядная камера представлена в виде кварцевой трубки, в которую помещена электродная система из алюминиевых электродов, анод выполнен в виде плоской пластины, катод - в виде цилиндрического стержня, вдоль которого прорезана полость прямоугольной формы, а половина области разряда ограничена в поперечном направлении диэлектрическими стенками. Боковые стенки состоят наполовину из алюминия внутри полосы катода и наполовину из стеклотекстолита в области между катодом и анодом. 2 ил.

Изобретение обеспечивает генерацию плотной объемной импульсной плазмы и может быть использовано для интенсификации процессов взаимодействия частиц в объеме и одновременного ограничения температуры поверхности изделий, нагреваемых ионным потоком из плазмы. Способ генерации плотной объемной импульсной плазмы основан на возбуждении разряда с самонакаливаемым полым катодом в газоразрядной системе источника электронов с плазменным эмиттером и формировании широкого электронного пучка, ионизирующего и возбуждающего газ в объеме. Разряд с самонакаливаемым полым катодом зажигают в импульсно-периодическом режиме, при этом сочетание параметров режима (амплитуда, длительность и частота повторения импульсов) выбирают таким образом, чтобы приращение температуры эмитирующей поверхности полого катода за время импульса (Tmax-Tmin) обеспечивало требуемую величину импульсного тока термоэмиссии катода, а отвод тепла в объем полого катода и излучение с его внешней поверхности за время паузы не привели к снижению температуры эмитирующей поверхности полого катода ниже минимального уровня Tmin, обеспечивающего минимальный стартовый ток термоэмиссии для развития разряда при подаче импульса напряжения, причем значения температур определяются из соотношения Ричардсона-Дэшмана Imax=AT2maxexp(-eϕ/koTmax)S1и Imin=AT2minехр(-eϕ/koTmin)S1, длительность импульса t и частота повторения импульсов f определяются из соотношений (Tmax-Tmin)=(2q/λ)(αt/π)1/2, q=k1UIImax/S1, k1ImaxU⋅f⋅t~k2σT4minS2, где Imax, Imin - требуемая амплитуда тока и минимальный стартовый ток термоэлектронной эмиссии катода, S1, S2 - площадь эмитирующей и внешней поверхности полого катода, А - термоэлектрическая постоянная, Tmax, Tmin - максимальная импульсная и минимальная стартовая температура полого катода, еϕ - работа выхода электронов из материала полого катода, е - заряд электрона, ko - постоянная Больцмана, q - импульсная плотность мощности, выделяющейся на эмитирующей поверхности полого катода, λ и α - коэффициенты теплопроводности и температуропроводности материала полого катода соответственно, π=3,14; k1 - доля ионного тока в общем токе на полый катод, U - напряжение горения импульсного разряда; k2 - коэффициент излучения (степень черноты) внешней поверхности полого катода, σ - постоянная Для нанесения покрытий в плазме электронного пучка могут быть использованы совместно с электронным источником распылительная система, формирующая поток атомов в направлении обрабатываемых изделий, а также плазмохимические реакции с участием компонентов газовой смеси, активируемой низкоэнергетическим электронным пучком. Технический результат - повышение эффективности возбуждения и ионизации газа и обеспечение возможности изменять структурно-фазовое состояние и функциональные характеристики изделий. 6 ил.

Изобретение относится к устройству с плазменным источником электронов. Применение устройства с плазменным источником электронов для формирования трехмерного изделия путем последовательного плавления частей по меньшей мере одного слоя порошковой основы, нанесенной на рабочий стол, части которого соответствуют последовательным сечениям трехмерного изделия, причем устройство с плазменным источником электронов содержит: разрядную камеру с катодом, в которой сгенерирована плазма, выходное отверстие, которое выполнено в разрядной камере с катодом и из которого электроны из плазмы извлечены ускоряющим полем, образованным между разрядной камерой с катодом и анодом, по меньшей мере одно устройство удержания плазмы, и переключающее средство для переключения по меньшей мере одного устройства удержания плазмы между первым значением, обеспечивающим возможность извлечения электронов из плазмы, и вторым значением, запрещающим извлечение электронов из плазмы. Технический результат - повышение качества формируемого трехмерного изделия. 17 з.п. ф-лы, 5 ил.
Наверх