Металлосплавной катод

 

Изобретение относится к электронной технике, а именно к конструкции катодных узлов на основе металлического эмиттера. Техническим результатом изобретения является повышение формоустойчивости катода при рабочих температурах при повышении технологичности изготовления, что достигается за счет того, что в металлосплавном катоде, содержащем фольгу из эмиссионного материала, нанесенного на подложку, соединенную с керном катода, согласно предложенному решению подложка выполнена в виде формоустойчивой втулки, на керке выполнен, по крайней мере, один выступ, при этом втулка жестко закреплена на одном из выступов. Втулка выполнена из материала с коэффициентом термического расширения, близким к коэффициенту термического расширения материала фольги эмиттера, и имеет толщину стенки в 5-20 раз больше толщины фольги. 1 ил.

Изобретение относится к электронной технике, а именно к конструкции катодных узлов на основе металлосплавного эмиттера.

Известен катод электровакуумного прибора на основе сплава металла платиновой группы с щелочноземельным металлом, в который введен тугоплавкий металл с целью повышения его формоустойчивости (см. а.с. СССР №285117).

Недостатком такого катода является его низкая технологичность вследствие трудности обработки сплава и соединения его с керном катода.

Известен также металлосплавной катод, содержащий фольгу из эмиссионного материала, закрепленную на подложке из тугоплавкого металла, при этом в фольгу введена и прикреплена к ней диффузионной сваркой спираль, навитая из проволоки тугоплавкого металла (см. патент РФ №2041529, МПК H 01 J 9/14).

Недостатком также является его низкая технологичность вследствие необходимости навивки спирали.

Наиболее близким к предлагаемому является металлосплавной катод, содержащий фольгу из эмиссионого материала, нанесенного на подложку, соединенную с керном катода (см. а.с. СССР №458055, МПК H 01 J 9/04, опубл. 25.01.75, БИ №3, прототип).

Недостатком способа является низкая формоустойчивость плакированного металла с фольгой эмиттера при рабочей температуре катода из-за различия коэффициентов термического расширения материала керна и плакированного металла с фольгой эмиттера, а также вследствие сплошного соединения фольги с керном катода.

Задачей настоящего изобретения является повышение формоустойчивости катода при рабочих температурах при повышении технологичности изготовления.

Поставленная задача решается тем, что в металлосплавном катоде, содержащем фольгу из эмиссионого материала, нанесенного на подложку, соединенную с керном катода, согласно предложенному решению подложка выполнена в виде формоустойчивой втулки, на керне выполнен по крайней мере один выступ, при этом втулка жестко закреплена на одном из выступов.

Втулка выполнена из материала с коэффициентом термического расширения, близким к коэффициенту термического расширения материала фольги эмиттера, и имеет толщину стенки в 5-20 раз больше толщины фольги.

На керне выполнены три выступа, расположенных по краям и в средней части втулки, при этом крайние выступы имеют проточки для прокачки замкнутых объемов, их ширина не превышает 0,4 от длины втулки, а ширина среднего выступа составляет 0,02-0,1 от длины втулки, при этом втулка закреплена на среднем выступе.

Изобретение поясняется чертежом, на котором изображен пример конструкции катода,

где 1 - фольга из эмиссионого материала;

2 - втулка;

3 - керн катода;

4 - средний выступ;

5 - место крепления втулки и керна;

6, 7 - крайние выступы.

Фольга из эмиссионного материала (сплава палладий - 2% бария) 1 нанесена на формоустойчивую втулку 2 диффузионной или роликовой (шовной) сваркой. Для повышения качества соединения втулку выполняют из материала с коэффициентом термического расширения, близким к коэффициенту термического расширения материала фольги эмиттера, например, из монеля. Толщину стенки втулки выбирают равной 5...20 от толщины фольги эмиттера f. Толщина стенки втулки менее 5 f не обеспечивает формоустойчивость втулки при рабочей температуре катода, а толщина втулки более 20 f приводит к перегреву фольги на ее внешней поверхности из-за недостаточного теплоотвода к керну катода. На вольфрамовом керне катода 3 выполнены средний 4 и крайние 6, 7 центрирующие выступы. Ширину среднего выступа 4 выбирают равной 0,02...0,1 от длины втулки L исходя из условия обеспечения токоотвода от эмиттера к керну. Ширина менее 0,02 L не обеспечивает механическую прочность соединения втулки с керном, а ширина более 0.1 L приводит к нарушению формоустойчивости втулки в месте соединения или разрушению соединения из-за термомеханических деформаций при рабочей температуре катода (1100...1400 К). Ширину крайних выступов 6, 7 не превышает 0,4 L исходя из условия ограничения теплоотвода для обеспечения заданной температуры фольги змиттера. В крайних выступах выполнены проточки (не показаны) для прокачки замкнутых объемов. Затем втулку 2 устанавливают на выступы 4, 6, 7 керна катода и паяют тугоплавким припоем по среднему выступу 5 при температуре 1400 К в водородной печи с точкой росы водорода -40...-60С. Пайка в водороде с точкой росы более -40С приводит к внутреннему окислению активной присадки (бария) в фольге эмиттера, что снижает эмиссионную способность катода и срок службы эмиттера. Пайка в водороде с точкой росы менее -60С приводит к недостаточному образованию на поверхности эмиттера оксидной пленки и оксидных включений бария, обеспечивающих высокий коэффициент вторичной электронной эмиссии. Повышение эмиссионной активности катода при его обработке в среде с заданной активностью кислорода способствует снижению термомеханических нагрузок на катод, что также повышает его формоустойчивость в номинальном режиме работы прибора.

Отсутствие крепления втулки с фольгой эмиттера на крайних выступах керна катода гарантирует свободное осевое тепловое расширение втулки и исключает ее деформацию (образование “гармошки”) при нагреве катода до рабочей температуры, что повышает его формоустойчивость. Изменение ширины крайних выступов и толщины стенки втулки позволяет плавно регулировать теплоотвод от поверхности катода и выбрать оптимальную температуру катода в номинальном режиме работы прибора, а пайка втулки с керном катода в среде с заданной активностью кислорода обеспечивает высокую эмиссионную способность катода, что также повышает его формоустойчивость вследствие снижения термомеханических нагрузок.

Формула изобретения

Металлосплавной катод, содержащий фольгу из эмиссионного материала, нанесенного на подложку, соединенную с керном катода, отличающийся тем, что подложка выполнена в виде втулки из материала с коэффициентом термического расширения, близким к коэффициенту термического расширения материала фольги эмиттера, и имеет толщину стенки в 5-20 раз больше толщины фольги, на керне выполнены выступы, расположенные по краям и в средней части втулки, при этом крайние выступы имеют проточки, ширина которых не превышает 0,4 длины втулки, а ширина среднего выступа керна составляет 0,02-0,1 длины втулки, при этом втулка жестко закреплена на среднем выступе.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к получению паров щелочных элементов, в частности к источникам паров калия, рубидия и цезия, которые используются при изготовлении эммитеров в термоэмиссионных и электронно-оптических преобразователях

Изобретение относится к электронной технике, в частности к технологии изготовления фотоэлектронных приборов методом раздельной обработки фотокатода и корпусной части

Изобретение относится к пленочной технологии и может быть использовано в производстве фотоэлектронных электровакуумных приборов (ФЭЦ), в частности для формирования фоточувствительных слоев фотокатодов
Изобретение относится к пленочной технологии и может быть использовано в производстве фотоэлектронных электровакуумных приборов (ФЭП), в частности для формирования подложки к фоточувствительному слою фотокатодов

Изобретение относится к электронной технике, в частности к способам изготовления фотоэлектронного умножителя (ФЭУ) с фотокатодом на основе щелочных металлов

Изобретение относится к технике высоких напряжений, в частности к области электрической изоляции в вакууме, и может быть использовано в электронной промышленности для повышения качества микроканальных фотоэлектронных приборов

Изобретение относится к фотоэлектронным приборам, а более конкретно к технологии изготовления фотокатода

Изобретение относится к области электротехники, в частности к способу одновременного активирования нескольких фотокатодов, которые используются в электронно-оптических преобразователях (ЭОП), фотоэлектронных умножителях, счетчиках фотонов и других фоточувствительных приборах

Изобретение относится к электронной технике, в частности к способу изготовления многощелочного фотокатода в индивидуальном стеклянном вакуумном баллоне, так называемом контейнере

Изобретение относится к области электронной техники, а именно к способам изготовления фотокатодов и устройствам для изготовления фотокатодов для использования их в различных областях промышленности, техники, а также для научных исследований. Технический результат - упрощение способа изготовления фотокатода, обеспечение высокой повторяемостью результатов, повышение квантовой эффективности. При изготовлении фотокатодов осуществляют наращивание тонкого покрытия на поверхности подложки как гомогенного, так и комбинированного посредством импульсного лазерного напыления тонких пленок, обеспечивают взаимодействие лазерного луча с мишенью, поглощение электромагнитной энергии, отвод тепла мишенью, расплавление материала мишени, испарение, многофотонную ионизацию, образование плазмы, свечение плазмы, обратное тормозное излучение, расширение плазменного облака, включающего материал мишени, которое осуществляют при начальной температуре плазмы в облаке в диапазоне 5000-15000 К. Описаны также вариант способа изготовления фотокатода и варианты устройств для их осуществления. 4 н.п. ф-лы, 2 ил.

Изобретение относится к области электронной техники, в частности к технологии изготовления вакуумных фотоэлектронных приборов (ФЭП), содержащих микроканальные пластины (МКП), такие как бипланарные и инверсионные электронно-оптические преобразователи (ЭОП), фотоэлектронные умножители (ФЭУ) и позиционно-чувствительные детекторы, и может быть использовано при производстве этих приборов. Технический результат - повышение производительности и эффективности обезгаживания МКП для улучшения параметров и повышения надежности вакуумного прибора. Способ включает облучение МКП входным электронным потоком при заданных напряжении и выходном токе. Обезгаживание осуществляют электронным потоком в пять этапов: первый этап проводят при входном токе 4·10-9-8·10-9 Α и выходном токе 0,05-,01 от тока проводимости МКП, второй этап обезгаживания осуществляют при напряжении на МКП 1000-1050 В при том же входном токе, на третьем этапе ступенчато снижают напряжение на МКП через каждые 50-100 В от 1000-1050 В до 650 - 600 В при постоянно поддерживаемом выходном токе 2,7-3,2 мкА, на четвертом этапе обезгаживание проводят при том же выходном токе и входном токе, соответствующем входному току предельного режима эксплуатации вакуумного прибора, на пятом этапе обезгаживание осуществляют при напряжении на МКП 1000-1050 В и выходном токе 10-12 мкА. 2 ил., 2 табл.

Изобретение относится к электровакуумной технике, в частности к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. Способ изготовления фотоэлектронного прибора включает изготовление корпуса прибора, катодного узла, коллектора электронов, монтаж внутренних деталей и узлов, сварку узлов прибора, загрузку всех узлов в высоковакуумную установку финишной сборки, откачку всей системы, термическое обезгаживание всех узлов в вакууме, электронное обезгаживание МКП и коллектора электронов в вакууме, изготовление фотокатода на катодном узле, герметизацию прибора, выгрузку ФЭП из установки финишной сборки. После загрузки в высоковакуумную установку финишной сборки катодного узла, корпуса с микроканальными пластинами и коллектора электронов, корпус с МКП и коллектор электронов разносят друг от друга и осуществляют откачку всей системы до давления не более 10-8 Па, термическое обезгаживание всех узлов в вакууме в течение не менее 4 ч при температуре от 300 до 400°С, раздельно выполняют одностороннее электронное обезгаживание в течение не менее 2 ч при температуре от 0 до 400°С коллектора электронов направленным на него потоком электронов и двустороннее электронное обезгаживание МКП при той же температуре, для чего в течение не менее 2 ч попеременно включают и выключают источники возбуждения вторичных электронов в МКП, расположенные перед входом и выходом МКП, и тем самым электронный поток направляют от входа к выходу МКП и, наоборот, от выхода к входу МКП, синхронно меняя полярность напряжения питания между входом и выходом МКП и постепенно увеличивая напряжение на МКП и выходной ток МКП до значений, не ухудшающих параметры МКП, после чего формируют фотокатод на катодном узле и далее корпус с МКП устанавливают на коллектор электронов, а катодный узел - на корпус, и выполняют герметизацию прибора. 2 ил.

Изобретение относится к оптико-электронному приборостроению, в частности к технологии обезгаживания микроканальных пластин (МКП), и может быть использовано для повышения качества электронно-оптических преобразователей, фотоэлектронных умножителей и детекторов на основе МКП. Технический результат - снижение газосодержания и газовыделения в МКП, в том числе в начальной по длине части каналов, до уровня требований фотоэлектронных приборов нового поколения с долговечностью 15000 ч и более, а также уменьшение времени обезгаживания МКП. В способе электронного обезгаживания микроканальной пластины на МКП подают импульсное или постоянное напряжение и в течение заданного времени электронный поток направляют от входа к выходу МКП, после чего меняют полярность напряжения питания между входом и выходом МКП и электронный поток направляют от выхода к входу МКП, по истечении заданного времени операции повторяются до полного обезгаживания МКП с одновременным повышением напряжения на МКП и выходного тока МКП до значений, не ухудшающих параметры МКП. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электровакуумной технике, в частности к изготовлению полупрозрачных серебряно-кислородно-цезиевых фотокатодов в случаях, где конструктивно нежелательно проведение высокочастотного разряда для окисления основного слоя серебра, а также в целях предотвращения окисления деталей внутренней арматуры. Способ изготовления фотокатода включает прогрев и обезгаживание подложки, охлаждение подложки фотокатода до нормальных климатических условий (НКУ), напыление основного слоя серебра, повторное напыление слоя серебра на подложку катода с фоточувствительным слоем, прогрев серебра с фоточувствительным слоем и сенсибилизацию кислородом, основной слой серебра обрабатывают цезием при рабочей температуре от 120°C до 160°C, производят охлаждение полученного слоя до НКУ и активируют его многократной поочередной подачей цезия и кислорода, затем при НКУ производят повторное напыление серебра на ранее сформированный фоточувствительный слой до падения фототока на 60-90 %, производят прогрев от 120°C до 160°C напыленного слоя серебра и активируют этот слой многократно и поочередно цезием и кислородом. Изобретение позволяет повысить спектральную чувствительность серебряно-кислородно-цезиевого фотокатода в инфракрасной области спектра. 2 ил.
Наверх