Способ изготовления подшипника скольжения

 

Изобретение относится к области машиностроения, в частности к изготовлению подшипников скольжения. Способ изготовления подшипника скольжения заключается в том, что изготавливают обойму из обладающего смазочной способностью графитового материала и втулку из титана или его сплава, упрочняют рабочую поверхность втулки поверхностным пластическим деформированием и формируют на ней анодно-катодным микродуговым оксидированием металлокерамический слой. Новым является то, что поверхностное пластическое деформирование втулки осуществляют до степени деформации сдвига 0,81,4, механически удаляют верхнюю рыхлую часть сформированного оксидного металлокерамического слоя и заполняют поры оксидной металлокерамики частицами материала обоймы путем фрикционной обработки с нагрузкой 1113 кПа и скоростью 2535 м/мин. Технический результат заключается в повышении антифрикционных и износостойких свойств подшипника скольжения и увеличении контактной жесткости покрытия на втулки подшипника при кратковременных повышенных нагрузках. 1 ил.

Изобретение относится к области машиностроения и может быть использовано при изготовлении подшипников скольжения, к которым предъявляются требования по коррозионной стойкости, износостойкости и контактной жесткости при кратковременных повышенных нагрузках.

Известен подшипник скольжения со втулкой, выполненной из пористого металлокерамического материала, поры которого заполнены смазывающим веществом на основе сложного эфира полигликолей и перфторполиэфирной кислоты [1].

Однако твердая металлокерамическая втулка этого подшипника лежит на не упрочненной основе и при больших кратковременных удельных нагрузках склонна к растрескиванию.

Наиболее близким к предлагаемому является способ изготовления, при котором изделия из вентильных металлов подвергают поверхностному пластическому деформированию до степени деформации сдвига 0,30,9 и далее осуществляют анодно-катодное микродуговое оксидирование (МДО) [2].

Недостатком известного способа является слабое упрочнение основного металла при использовании титана и его сплавов, что не обеспечивает лежащему на нем оксидному металлокерамическому слою контактную жесткость, а также невозможность использовать сформированную поверхность оксидного металлокерамического слоя в паре трения подшипников скольжения.

Целью изобретения является повышение антифрикционных и износостойких свойств подшипника скольжения и увеличение контактной жесткости оксидного металлокерамического слоя (покрытия) на втулке подшипника при кратковременных повышенных нагрузках.

Сущность изобретения заключается в следующем.

Изготавливают обойму из обладающего смазочной способностью графитового материала и втулку из титана или его сплава, упрочняют рабочую поверхность втулки поверхностным пластическим деформированием (ППД) до степени деформации сдвига 0,81,4, формируют на ней анодно-катодным микродуговым оксидированием металлокерамический слой, механически удаляют его верхнюю рыхлую часть и заполняют поры оксидной металлокерамики частицами материала обоймы путем фрикционной обработки (натирки) с нагрузкой 1113 кПа и скоростью 2535 м/мин.

Технический результат предложенного способа заключается в достижении достаточного упрочнения лежащего под оксидной металлокерамикой основного металла втулки, а также в получении плотной оксидной металлокерамики с равномерным заполнением ее пор частицами материала обоймы.

На чертеже схематично представлен продольный разрез предложенного подшипника скольжения. При этом рассмотрен случай, когда втулка является непосредственно валом.

Неподвижная втулка (вал) 1 подшипника состоит из металлической основы, поверхность которой упрочнена путем наклепа. На упрочненную поверхность нанесен слой 2 оксидной металлокерамики с порами, заполненными частицами 3 материала обоймы. Вращающаяся обойма 4 выполнена из обладающего смазочной способностью графитового материала.

Изготовление подшипника скольжения заключается в следующем.

Вращающуюся обойму 4 из обладающего смазочной способностью графитового материала изготавливают обычной механической обработкой.

В качестве материала для неподвижной втулки 1 используют титан и сплавы на его основе, поскольку они удовлетворяют требованиям по коррозионно-химической стойкости, обладают высокими механическими свойствами и довольно широко распространены в промышленности.

Обработка неподвижной втулки 1 из титана или его сплава ППД до Г = 0,81,4 упрочняет на глубину 0,50,6 мм более мягкий по сравнению со слоем 2 оксидной металлокерамики металл.

Диапазон Г = 0,81,4 для титана и его сплавов связан с тем, что при Г<0,8 не происходит достаточного упрочнения металла, а при Г>1,4 происходит перенаклеп с зарождением субмикро- и макротрещин, что приводит к снижению прочности поверхностного слоя металла.

После получения с помощью ППД упрочненной поверхности основного металла, на ней формируют анодно-катодным микродуговым оксидированием металлокерамический слой 2.

Сформированный слой 2 оксидного металлокерамического покрытия обладает высокой износо- и коррозионностойкостью и прочно взаимосвязан посредством молекулярных сил с упрочненной наклепом поверхностью основного металла.

Оксидное металлокерамическое покрытие на титане и его сплавах состоит из верхней рыхлой и нижней плотной части. Верхнюю часть удаляют механической обработкой, например шлифованием.

Для улучшения антифрикционных свойств оксидного металлокерамического слоя 2 поры слоя заполняют частицами 3 материала ответной детали (обоймы).

Заполнение пор частицами 3 материала обоймы осуществляют путем фрикционной обработки (натирки) на токарном станке. Оптимальная нагрузка при фрикционной обработке составляет 1113 кПа, а скорость - 2535 м/мин. Меньшая нагрузка и скорость не обеспечивают должным образом равномерное заполнение пор оксидного металлокерамического слоя 2 и увеличивают время фрикционной обработки. Большая же нагрузка и скорость нецелесообразны, т.к. они не ускоряют проведение процесса фрикционной обработки и не улучшают его качество.

Предложенный способ изготовления подшипника скольжения позволяет получать на титановой втулке антифрикционный, коррозионно- и износостойкий слой оксидной металлокерамики с порами, заполненными частицами материала обоймы, лежащий на упрочненном ППД основном металле.

Источники информации

1. Самосмазывающийся подшипник скольжения: А.С. СССР, 1763742 А1, F 16 C 33/10 (аналог).

2. Способ упрочнения изделий из вентильных металлов и их сплавов: Пат. РФ №2085615, С 23 С 8/10 (прототип).

Формула изобретения

Способ изготовления подшипника скольжения, заключающийся в том, что изготавливают обойму из обладающего смазочной способностью графитового материала и втулку из титана или его сплава, упрочняют рабочую поверхность втулки поверхностным пластическим деформированием и формируют на ней анодно-катодным микродуговым оксидированием металлокерамический слой, отличающийся тем, что поверхностное пластическое деформирование втулки осуществляют до степени деформации сдвига 0,8-1,4, механически удаляют верхнюю рыхлую часть сформированного оксидного металлокерамического слоя и заполняют поры оксидной металлокерамики частицами материала обоймы путем фрикционной обработки с нагрузкой 11-13 кПа и скоростью 25-35 м/мин.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к машиностроению, а именно к подшипниковым узлам в валковых кассетах современных высокоскоростных проволочных прокатных станов

Вал "asb-08" // 2215915
Изобретение относится к подшипниковым устройствам, в частности устройствам обеспечения смазки в подшипниках скольжения

Изобретение относится к буровой технике, в частности к опорам шарошечных долот для бурения скважин

Изобретение относится к насосо- и компрессоростроению и может найти применение в турбонасосах и компрессорах

Изобретение относится к области машиностроения, преимущественно может использоваться в машинах и аппаратах с движущимися деталями, работающими в условиях газовой смазки

Изобретение относится к машиностроению, преимущественно может использоваться в машинах и аппаратах с движущимися деталями, работающими в условиях газовой смазки

Изобретение относится к опорным подшипникам и в особенности к средствам предотвращения перекосов для гидродинамического воздушного подшипника

Изобретение относится к области машиностроения, преимущественно может использоваться в машинах и аппаратах с движущимися деталями, работающими в условиях газовой смазки

Изобретение относится к области машиностроения и может быть использовано в прокатных станах

Изобретение относится к машиностроению, преимущественно может использоваться в машинах и аппаратах с движущимися деталями, работающими в условиях газовой смазки

Изобретение относится к области машиностроения, конкретно - турбостроения, в частности к производству радиальных подшипников скольжения для роторов мощных турбоагрегатов и турбогенераторов

Изобретение относится к подшипнику с масляной пленкой, который используется в прокатных станах, а также к способу изготовления вкладыша

Изобретение относится к области турбостроения, а именно к конструкциям опорных подшипников скольжения роторов мощных турбоагрегатов и турбогенераторов

Изобретение относится к работающим в тяжелом режиме зубчатым передачам, которые используют в механизмах привода прокатных станов

Изобретение относится к области машиностроения, а именно к самоустанавливающимся подшипниковым узлам скольжения

Изобретение относится к подшипникам скольжения преимущественно гидротурбин

Изобретение относится к области машиностроения, а именно к технологии изготовления слоистых изделии, и может быть использовано для производства подшипников скольжения

Изобретение относится к области машиностроения, в частности к конвейерным транспортным машинам, и может использоваться в конструкциях ленточных конвейеров в разных областях промышленности

Изобретение относится к области машиностроения, преимущественно может использоваться в машинах и аппаратах с вращающимися деталями, работающими в условиях газовой смазки, например в шпинделях металлообрабатывающих станков
Наверх