Акустическая волоконно-оптическая антенна

 

Изобретение относится к системам дистанционного измерения статического и акустического давления, приема и пеленгации шумовых и эхолокационных сигналов звуковых, низких звуковых и инфразвуковых частот в гидроакустических системах и сейсмической разведке, в системах охраны объектов на суше и в водной среде. Техническим результатом является использование дополнительного второго канала измерения с функцией уменьшения оптических потерь с ростом интенсивности акустического сигнала, а также обеспечение суммирования выходных сигналов двух каналов измерения. Акустическая волоконно-оптическая антенна (АВОА) для френелевской зоны дифракции, размещенная в газообразной или жидкой среде, содержащая оптический канал, состоящий из входных и выходных многомодовых ВС и соединенных с ними аналогичными световодами распределенными вдоль них ВОД микроизгибного типа, причем используется второй дополнительный оптический канал, в первом канале размещены ВОД без микроизгибов, а во втором канале - ВОД с предварительно созданными в них микроизгибами, входные ВС первых датчиков каждого канала подключены к направленному ответвителю, а выходные ВС последних ВОД каждого канала подключены к отдельным фотоприемникам, выходы которых соединены с входами дифференциального усилителя. 2 з.п.ф-лы, 1 ил.

Изобретение относится к волоконно-оптическим сенсорным системам и может использоваться в системах дистанционного измерения статического и акустического давления, приема и пеленгации шумовых и эхолокационных сигналов звуковых и инфразвуковых частот в гидроакустических системах и сейсморазведке, в системах охраны объектов на суше и в водной среде, например нефте - и газопроводов.

Известны гидроакустические системы с гибкими протяженными антеннами с равномерно установленными по длине антенны пьезокерамическими или волоконно-оптическими гидрофонами или группами гидрофонов для пеленгации шумящих объектов, например подводных лодок (А.А. Гуревич и др. Гидроакустические системы с гибкими протяженными буксируемыми антеннами. - Судостроение за рубежом. № 10, 1984 г., стр.34-55).

Известен волоконно-оптический датчик микроизгибного типа, в котором многомодовый волоконный световод располагается между парой гребенчатых пластинок, и при приложении акустического давления в волоконном световоде (ВС) образуются микроизгибы с периодом гребней пластинок (Appl. Opt., 1980, v.19, N 19, рр.3265-3267). Из-за изгибов возникают потери интенсивности света в ВС, а величина модуляции интенсивности света ставится в соответствие с приложенным давлением.

Наиболее близким техническим решением и принятым за прототип к предлагаемому устройству является волоконно-оптический датчик, в котором на цилиндрический сердечник с продольными гребнями навит многомодовый ВС, причем между гребнями расстояние может быть как равным, так и изменяющимся вдоль длины датчика (US Patent N 4524436, 18.06.1985).

Недостатками прототипа, а также аналогов являются необоснованная для френелевской зоны дифракции сложность обработки информационных сигналов методами корреляционного анализа с целью обнаружения местоположения источника акустических сигналов, а также малая величина динамического диапазона волоконно-оптических датчиков акустической антенны.

Задачей, на решение которой направлено данное изобретение, является упрощение системы обработки принимаемых информационных сигналов для френелевской зоны дифракции при пеленгации источников акустических сигналов, расширение динамического диапазона и увеличение чувствительности акустической антенны.

Данная задача решается за счет достижения технического результата, заключающегося в использовании дополнительного второго канала измерения с функцией уменьшения оптических потерь с ростом интенсивности акустического сигнала, а также в обеспечении суммирования выходных сигналов двух каналов измерения.

Сущность предлагаемого изобретения заключается в том, что указанный технический результат достигается благодаря тому, что для френелевской зоны дифракции в акустической волоконно-оптической антенне (АВОА), размещаемой в газообразной или жидкой среде, расстояние между равноудаленными волоконно-оптическими датчиками (ВОД) выбирается равным половине длины волны акустического сигнала на низшей частоте рабочего диапазона с одновременным условием целочисленной кратности длине затухания звука в данной среде, а акустический датчик представляет собою парный ВОД с предварительно созданными в одном из них микроизгибами обращением кинематической схемы известных ВОД микроизгибного типа, соответствующих максимуму динамического диапазона другого. Входные ВС каждого датчика пары подключены к направленному ответвителю, их выходные ВС подключены к отдельным фотоприемникам, выходы которых соединены с входами дифференциального усилителя, причем в обоих каналах антенны дополнительно могут быть установлены один или несколько волоконно-оптических усилителей в соответствии с рабочей длиной волны и требуемыми коэффициентами усиления.

На чертеже изображена принципиальная схема предлагаемого устройства. Оно состоит из направленного ответвителя 1, предназначенного для разделения входного излучения на два оптических канала. В каждом из каналов расположены на равном расстоянии друг от друга оптически соединенные ВОД давления микроизгибного типа. Число датчиков в обоих каналах одинаково. Причем в первом канале размещены ВОД 2 без микроизгибов, а во втором канале - ВОД 3 с предварительно созданными в них микроизгибами. Тем самым акустические датчики 2 и 3 представляют собой фактически парный датчик давления, и стрела прогиба ВС в микроизгибе во втором канале при отсутствии акустического давления равна стреле прогиба ВС в микроизгибе первого канала при наличии акустического давления величиной, соответствующей максимальному значению на краю динамического диапазона. Выходы последних ВОД каждого канала оптически сопряжены с оптическими входами фотоприемников 4 и 5. Подключение направленного ответвителя 1, ВОД 2 и 3 к оптическому кабелю и фотоприемникам 4 и 5 осуществлено посредством, например, оптических разъемов или сварочных стыков. Электрические выходы фотоприемников соединены с входами дифференциального усилителя 6.

Устройство работает следующим образом. Световой сигнал интенсивностью J0 поступает в направленный ответвитель 1, после которого интенсивностью Jвx=0,5J0 без учета потерь в ответвителе 1 и отрезках ВС поступает через входные отрезки ВС в оба канала АВОА, соответственно. Далее, пройдя М штук парных акустических ВОД 2 и 3, через выходные отрезки ВС 7 и 8 интенсивностями J1 и J2 поступают на два фотоприемника 4 и 5 соответственно. С фотоприемников электрические сигналы I1 и I2 поступают на вход дифференциального усилителя 6, разностный выходной сигнал которого величиной I=I2-I1 пропорционален величине акустического сигнала, причем величина Jм с каждого датчика нормируется из-за потерь в ВС на величину = (Lвод+L) дБ, где Lвод - длина ВС, намотанного на датчик, L - расстояние между датчиками, а - коэффициент общих потерь в ВС, т.е. I1м= Jм (M-1), где I1м и Jм - нормированный разностный электрический сигнал и фактический сигнал с М-го парного датчика соответственно. При отсутствии акустического сигнала I=0.

Будем считать также, что спектральная плотность акустического сигнала в диапазоне рабочих частот антенны f=50-1500 Гц, f=const. Длительность зондирующих световых импульсов со средней мощностью выбираем из условия Lnc/c=1/2VAKnс/fHc, где VAK - скорость акустического сигнала в данной среде, fH - низшая частота рабочего диапазона антенны, nc - показатель преломления сердцевины ВС, с - скорость света в вакууме. Тогда пространственная протяженность зондирующего светового импульса в АВОА будет равна L = с/nс и будет выполнено необходимое условие L L. Таким образом, выбор лимитирует расстояние между датчиками и наоборот. При этом зондирующий импульс опрашивает только один парный датчик.

Местоположение центра источника акустического сигнала определяется точкой пересечения перпендикуляра к середине отрезка линии антенны, датчики которой фиксируют Iмах, с окружностью радиусом, равным расстоянию затухания da акустического сигнала в е раз с центром на датчике, отклик которого I1м=(1/e)I1max. Для этого начало временной развертки последующего такта прохождения зондирующего импульса при фиксации I запускается синхроимпульсом, который отводится с I1 и/или I2 предыдущего такта, причем длительность развертки должна быть равной времени прохождения зондирующего импульса всей длины антенны Lвс, т.е. =Lвсnc/с.

Вследствие того, что расстояние затухания da акустического сигнала зависит от температуры среды, воздуха и от влажности, необходимо периодически определять его с помощью данной антенны, располагая тестирующий источник акустического сигнала вблизи первого парного ВОД.

Известно, что градиентный ВС наиболее пригоден для создания микроизгибных ВОД (см. Волоконная оптика и приборостроение. - Под общ. ред. М.М. Бутусова, Л.: Машиностроение, 1987 г., стр.101-110). Поэтому для данной антенны выбираем микроизгибные ВОД давления на основе градиентного ВС, имеющего ориентировочно следующие параметры: диаметр сердцевины dс=2а=50 мкм, диаметр оптической оболочки d0=125 мкм, диаметр защитной оболочки, включая влаго-водонепроницаемый и демпфирующий слои d3=0,4 мм.

Известно также, что основным недостатком ВОД давления микроизгибного типа является малая величина динамического диапазона, равная 34 дБ. Предлагаемая нами двухканальная схема АВОА со встречным включением и регистрацией сигнала с помощью дифференциального усилителя лишена этого недостатка, т.к. в два раза увеличивается не только динамический диапазон, но и чувствительность устройства. В отсутствие акустического сигнала оба канала антенны сбалансированы, т.е. I=0. При наличии акустического сигнала потери света на возникающих микроизгибах ВС в ВОД первого канала вызывают уменьшение интенсивности света J1 и, соответственно, тока I1, в то время как в ВОД второго канала, из-за распрямления предварительно созданных микроизгибов, потери света уменьшаются и, соответственно, возрастает интенсивность света J2 и ток I2, так что одинаковые по величине и противоположные по знаку изменения интенсивности света в обоих каналах вызывают удвоение выходного сигнала I.

Предварительное создание микроизгибов ВС и ВОД второго канала осуществляется обращением кинематических схем известных ВОД микроизгибного типа или иным способом так, чтобы динамические диапазоны ВОД обоих каналов были равны по абсолютной величине |D1|=|D2| 34 дБ и противоположны по знаку. Таким образом, динамический диапазон предлагаемой антенны в целом будет равен DA68 дБ, т.е. такая система превосходит по этому параметру и по чувствительности все известные акустические ВОД с модуляцией интенсивности и становится сравнима с пьезоэлектрическими датчиками.

Пример 1

Отсутствие адекватного теоретического расчета микроизгибного ВОД заставляет при разработке конкретного устройства опираться на немногочисленные эмпирические данные при выборе основных параметров, таких как тип ВС - градиентный ВС с вышеприведенными геометрическими параметрами. Дополнительно выбираем период микроизгибов =1,1 мм; число микроизгибов на одном витке намотки ВС на цилиндрический сердечник-катушку 50 мкизг/виток; длину намотки ВС по образующей цилиндра lц=50 мм; зазор между витками ВС - =0,1 мм. Тогда относительная разница показателей преломления в ВС - n=22a2/2 0,01, что соответствует слабонаправляющему ВС, длина витка - lв=m =55 мм. Диаметр сердечника-катушки dCK=lв/ 17,5 мм, число микроизгибов ВОД m =mlц/(d3+ )=5000 мкизг, длина ВС намотанного на ВОД - Lвод=2lв lц=5,5 м.

а). Рассмотрим АВОА, которая размещена в воздушной среде. Расстояние между ВОД L=0,5VАК/fн 3,3 м равно половине величины спектральной области дисперсии антенны в первом порядке дифракции и определяет (характеризует) минимальную разрешаемую способность ее. Выберем рабочую длину волны АВОА =0,85 мкм и коэффициент потерь ВС 0,85=3 дБ/км, среднюю мощность входного лазерного сигнала Рвх=10-3 Вт. Тогда при отношении сигнал/шум, равном 10, средняя выходная мощность =10-8 Вт и суммарный динамический диапазон антенны D =10lg =50 дБ. Выделяя 10 дБ на потери в разъемах и/или стыках, получаем, что динамический диапазон антенны Da=D -10=40 дБ, который разбиваем на два слагаемых Dтрассы=21 дБ и Dмкизг=19 дБ. Тогда полная длина ВС антенны LBC=DTP/ =7 км, что хорошо согласуется с длиной между ретрансляторами в ВОЛС. Количество ВОД антенны определяется из уравнения МLВОД+L(М-1)=LBC, и для данного случая M0,85 796 датчиков. Длина антенны равна LA=L(M-1) и для данного случая соответствует 2623 м. Длина ВС, намотанного на все M датчиков одного канала, равна L1=MLВОД, и для данного случая L1 4378 м. Длительность такта для nс=1,5 равна 35 мксек. При выбранной длительности зондирующего импульса =10-8 сек определяем пространственную протяженность зондирующего светового импульса L =2,0 м, что меньше расстояния между ВОД L=3,3 м.

При этом мощность в зондирующем импульсе будет равна Рвх= / и для данного случая составляет 3,5 Вт. При потерях на сварочном стыке порядка 0,05 дБ возможна сборка антенны из секций по четыре парных ВОД, а при потерях в разъемах порядка 0,5 дБ из - секций по 40 парных ВОД.

В вышеприведенном примере длина АВОА оптимизирована, в то время как динамический диапазон ВОД меньше оптимального – 34 дБ на 15 дБ.

б). Рассмотрим случай, в котором оптимизируем основной параметр ВОД -динамический диапазон, т.е. выбираем Dмкизг=34 дБ. Тогда получаем DTP=6 дБ. Аналогичным расчетом для той же длины волны получаем, что LBC=2 км, M0,85=228, LA=750 м, L1вод=1250 м, =10 мкс, Рвх=1,0 Вт.

Для того чтобы АВОА была оптимизирована как по длине, так и по динамическому диапазону, необходимо в схему АВОА включить волоконно-оптический усилитель с общим коэффициентом усиления G0,85 15 дБ, который может быть реализован на активном волокне с примесью Nd3+ в сердцевине (см. X. Гаприндашвили, Ш. Гватуа и др. Исследование свойства активного стекловолокна в режиме усиления. ЖПС, 1972 г., т.17, №24, стр.715-718).

Пример 2

а). При =1,3 мкм и =1 дБ/км и тех же исходных данных из примера 1 следует увеличить величину суммарных потерь на разъемах и/или стыках до 15 дБ из-за увеличения длины ВС антенны и количества ВОД. Тогда получаем, что DA=35 дБ, а выбирая DTP=19 дБ и Dмкизг=16 дБ, определяем: LBC=19 км, M=2160, LA=7120 м, Lвод=11880 м, =95 мкс, Рвх=9,5 Вт. При тех же значениях потерь на сварочном стыке или разъеме возможна сборка антенны из секций по 7 и 72 ВОД соответственно. Для оптимального варианта данного случая необходимо включить в схему АВОА волоконно-оптический усилитель на активном волокне с примесью Nd3+ в сердцевине и общим коэффициентом усиления G1,3 18 дБ.

б). При =1,55 мкм и =0,2 дБ/км и тех же исходных данных следует увеличить величину суммарных потерь на разъемах и/или на стыках до 20дБ из-за увеличения длины ВС антенны и количества парных ВОД. Тогда получаем, что DA=30 дБ, а выбирая DTP=16 дБ и Dмкизг=14 дБ, определяем LBC=80 км, M=9091, LA=30 км, Lвод=50 км, =400 мкс, Рвх=40 Вт.

При тех же значениях потерь на сварочном стыке или разъеме возможна сборка антенны из секций 23 и 230 ВОД соответственно. Следует отметить, что количество ВОД в отдельной секции можно оптимизировать, применяя как сварочные стыки, так и разъемы в обратно пропорциональном соотношении. Для оптимального варианта в данном случае необходимо включить в схему АВОА волоконно-оптический усилитель на активном волокне с примесью Еr3+ в сердцевине и общим коэффициентом усиления G1,55 20 дБ. При разработке конкретной АВОА возможны корректировка и оптимизация отдельных параметров компонент и антенны в целом при условии ввода и обработки всех данных в ЭВМ по специальной программе с возможностями моделирования экстремальных ситуаций.

Формула изобретения

1. Акустическая волоконно-оптическая антенна (АВОА) для френелевской зоны дифракции, размещенная в газообразной или жидкой среде, содержащая оптический канал, состоящий из входных и выходных многомодовых волоконных световодов (ВС) и соединенных с ними аналогичными световодами, распределенными вдоль них волоконно-оптических датчиков (ВОД) микроизгибного типа, отличающаяся тем, что расстояния между равноудаленными ВОД выбраны равными половине длины волны акустического сигнала на низшей частоте рабочего диапазона с одновременным удовлетворением условию целочисленной кратности длине затухания звука в данной среде, используется второй дополнительный оптический канал, причем в первом канале размещены ВОД без микроизгибов, а во втором канале - ВОД с предварительно созданными в них микроизгибами, причем динамические диапазоны ВОД обоих каналов равны по абсолютной величине и противоположны по знаку, причем входные ВС первых датчиков каждого канала подключены к направленному ответвителю, а выходные ВС последних ВОД каждого канала подключены к отдельным фотоприемникам, выходы которых соединены с входами дифференциального усилителя.

2. Акустическая волоконно-оптическая антенна по п.1, отличающаяся тем, что предварительно созданные микроизгибы в одном из ВОД пары осуществлены обращением кинематической схемы известных ВОД микроизгибного типа.

3. Акустическая волоконно-оптическая антенна по п.1, отличающаяся тем, что в обоих каналах антенны дополнительно установлены один или несколько волоконно-оптических усилителей в соответствии с рабочей длиной волны и требуемыми коэффициентами усиления.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к гидроакустике и может быть использовано для контроля глубины и скорости погружения (подъема) подводного объекта, а также заданий азимутального направления движения объекта и определения его пространственных координат

Изобретение относится к области гидроакустики и может быть использовано аквалангистами для определения пеленга на гидроакустический маяк в морской среде

Изобретение относится к области гидроакустики, а именно гидролокации, и может быть использовано при обнаружении объектов в активном режиме

Изобретение относится к области гидроакустики и может быть использовано для измерения параметров шумоизлучения надводных и подводных плавсредств

Изобретение относится к области техники реконструкции и устройствам для реконструкции пространственных изображений полей гидроакустических параметрических приемных антенн

Изобретение относится к области гидроакустики, связанной с приемом широкополосных сигналов, и может быть использовано при шумопеленговании, гидролокации, обнаружении гидроакустических сигналов, классификации, для гидроакустической связи, для подводных геофизических работ

Изобретение относится к области способов реконструкции пространственных изображений полей гидроакустических параметрических приемных антенн, в частности параметрических антенн с трехволновым механизмом взаимодействия плоских волн, и может быть использовано для контроля областей взаимодействия волн, определения их границ: протяженности поля бестелесной антенны, а также для определения основных энергетических параметров антенн: характеристик направленности и коэффициентов концентрации и полезного действия

Изобретение относится к гидроакустике и может быть использовано для определения параметров движения объекта, сближающегося с наблюдателем по криволинейной траектории

Изобретение относится к области гидроакустики и может быть использовано для защиты подводных плавсредств от обнаружения гидролокатором

Изобретение относится к медицине, более точно к медицинской технике, и может быть использовано для определения рекомендуемого времени нахождения человека под воздействием УФ-облучения

Изобретение относится к области спектрофотометрии протяженных внеатмосферных объектов

Изобретение относится к измерениям таких параметров, как интегральная чувствительность, пороговая облученность, их неоднородности по полю измеряемого многоэлементного приемника излучения, и позволяет повысить точность измерения фотоэлектрических параметров многоэлементных приемников излучения при одновременном снижении стоимости устройства, его габаритов, а также повышении корректности измерений параметров ИК приемников

Изобретение относится к области неразрушаемого контроля материалов и изделий

Изобретение относится к технической физике, более конкретно к фотометрии, и может быть использовано в конструкции тест объектов, используемых для контроля характеристик инфракрасных наблюдательных систем

Изобретение относится к области оптического приборостроения и может быть использовано при исследовании динамики быстропротекающих процессов

Изобретение относится к оптическому приборостроению, а точнее к фотоприемникам, чувствительным к излучению в различных областях спектра, и может использоваться для регистрации и измерения излучения различного спектрального состава, а также в системах построения изображения

Изобретение относится к области волоконно-оптической связи и может быть использовано в приемной аппаратуре систем, где необходимо обеспечить максимальную дальность передачи без ретрансляции

Изобретение относится к средствам измерения энергетических параметров направленного оптического излучения, в частности мощности или энергии, диаметра лазерного пучка, расходимости и т.д

Изобретение относится к лазерной технике, в частности к устройствам, предназначенным для измерений коэффициента поглощения оптических зеркал лазеров

Изобретение относится к техническим средствам измерений и может быть использовано для измерения параметров вибраций различных конструкций, вращающихся деталей, а также смещений, скоростей и ускорений на основе компьютерной обработки измеренных значений
Наверх