Способ совместного получения 1,1,3-триалкил-1,5-пентадиолов и 1,1,4-триалкил-1,5-пентандиолов

 

Изобретение относится к новому способу совместного получения 1,1,3-триалкил-1,5-пентандиолов формулы (1) и 1,1,4-триалкил-1,5-пентандиолов формулы (2)

где значения R, R1 и R2 в формулах (1) и (2) одинаковые и выбираются из R=н-С4Н9, н-C6H13, R1=СН3, С2H5, R22Н5, н-С4Н9, заключающемуся в том, что проводят в атмосфере инертного газа взаимодействие -олефина общей формулы , где R=н-C4H9, н-С6Н13, с триэтилалюминием в присутствии катализатора - цирконацендихлорида Cp2ZrCl2 в мольном соотношении :AlEt3:Cp2ZrCl2=10:(10-14):(0,3-0,7) при комнатной температуре, затем охлаждение реакционной смеси, добавление катализатора - однохлористой меди и кетона формулы R1C(O)R2, где R1=СН3, С2Н5, R22Н5, н-C4H9, в мольном соотношении CuCl:R1C(O)R2=(0,8-1,2):(10-14), и перемешивание при комнатной температуре, с последующим окислением реакционной массы и гидролизом. Способ позволяет получить целевые продукты с общим выходом 42-64%. 1 табл.

Изобретение относится к органической химии, в частности совместному получению 1,1,3-триалкил-1,5-пентандиола (1) и 1,1,4-триалкил-1,5-пентандиола (2) общей формулы

Полученные соединения могут найти применение в фармацевтической, косметической, текстильной, пищевой, лакокрасочной отраслях промышленности, а также в производстве антифризов, гидравлических жидкостей, взрывчатых эфиров азотной кислоты.

Известен способ ([1] А.В.Кучин, Г.А.Толстиков. Препаративный алюминийорганический синтез. Сыктывкар. 1997. С.31) получения 1-алкил-1,5-пентандиолов (3) гидроалюминированием аллилацетона двухкратным избытком диизобутилалюминийгидрида (i-Bu2AlH) при температуре 110-120С с последующим окислением образующегося алюминийорганического соединения кислородом и гидролизом реакционной массы по схеме

Известный способ не позволяет получать 1,1,3-триалкил-1,5-пентандиол (1) и 1,1,4-триалкил-1,5-пентандиол (2).

Известен способ ([2]. F. Sato, S. Haga, M. Sato. Synthesis of organoboranes via organoaluminums. A convenient route to trialkenylboranes from nonconjugated Diolefins. Chem. hett., 1978, pp 999-1000) совместного 1,5-пентандиола (4) и 1-метил-1,4-бутандиола (5) гидроалюминированием 1,4-пентадиена с помощью алюмагидрида лития (LiAlH4) в присутствии катализатора ТiСl4 в ТТФ с последующим добавлением эфирата трехфтористого бора и окислением реакционной массы щелочной перекисью водорода по схеме

Известным способом не могут быть 1,1,3-триалкил-1,5-пентандиол (1) и 1,1,4-триалкил-1,5-пентандиол (2).

Таким образом, в литературе отсутствуют сведения по совместному получению 1,1,3-триалкил-1,5-пентандиола (1) и 1,1,4-триалкил-1,5-пентандиола (2).

Предлагается новый способ совместного получения 1,1,3-триалкил-1,5-пентандиола (1) и 1,1,4-триалкил-1,5-пентандиола (2).

Сущность способа заключается во взаимодействии в атмосфере инертного газа -олефинов общей формулы , где R=H-C4H9, н-С6Н13, с триэтилалюминием (AlEt3) в присутствии катализатора цирконацендихлорида (Cp2ZrCl2), взятыми в мольном соотношении : AlEt3:Cp2ZrCl2=10:(10-14):(0,30,7), предпочтительно 10:12:0.5, при комнатной температуре (20-22С) в течение 8 часов с последующим охлаждением реакционной массы до -15С и добавлением катализатора однохлористой меди (CuCl) и кетона общей формулы R1C(O)R2, где R1=СН3, С2Н5, R22Н5, н-С4Н9, взятыми в мольном соотношении CuCl:R1C(O)R2=(0,81,2):(1014), предпочтительно 1:12, с перемешиванием при комнатной температуре в течение 6-10 часов, предпочтительно 8 часов, с последующим окислением реакционной массы кислородом и гидролизом водой.

Общий выход 1,1,3-триалкил-1,5-пентандиола (1) и 1,1,4-триалкил-1,5-пентандиола (2) составляет 42-64%, соотношение (1):(2) ~1:3.

Реакция протекает по схеме

[Zr]=Cp2ZrCl2; [Cu]=CuCl;

R=н-C4H9, н-С6Н13; R1=CH3, С2Н5; R2=C2H5, н-C4H9

Проведение реакции в присутствии Cp2ZrCl2 больше 7 мол.% и CuCl больше 12 мол.% по отношению к исходному -олефину не приводит к существенному увеличению выхода целевых продуктов (1) и (2). Использование катализатора Cp2ZrCl2 меньше 3 мол.% и CuCl менее 8 мол.% снижает выход пентандиолов (1) и (2), что связано, возможно, со снижением каталитически активных центров в реакционной массе. Проведение реакции при более высокой температуре (например, 40С) не приводит к увеличению выхода целевых продуктов. При меньшей температуре (например, 0С) снижается скорость реакции.

Существенные отличия предлагаемого способа.

В предлагаемом способе используются в качестве исходных соединений -олефины, AlEt3, кетоны, катализаторы Cp2ZrCl2 и CuCl, a реакционную массу окисляют кислородом, что обуславливает образование 1,1,3-триалкил-1,5-пентандиола (1) и 1,1,4-триалкил-1,5-пентандиола (2). В известном способе применяются в качестве исходных соединений 1,4-пентадиен, эфират трехфтористого бора алюмагидридлитий, катализатор TiCl4, а реакционную массу окисляют щелочной перекисью водорода.

Предлагаемый способ позволяет получать 1,1,3-триалкил-1,5-пентандиол (1) и 1,1,4-триалкил-1,5-пентандиол (2), синтез которых в литературе не описан.

Способ поясняется следующими примерами:

ПРИМЕР 1. В стеклянный реактор объемом 50 мл, установленный на магнитной мешалке, в атмосфере аргона помещают 3 мл гексана, 10 ммолей 1-октена, 12 ммолей Аl3Еt, 0.5 ммолей катализатора Cp2ZrCl2 и перемешивают 8 часов, затем охлаждают до -15С, добавляют 6 мл гексана, 1 ммоль CuCl и 12 ммолей метилэтилкетона. Температуру доводят до комнатной и перемешивают 8 часов. Затем реакционную массу окисляют кислородом известным способом А.В.Кучин, Г.А.Толстиков. Препаративный алюминийорганический синтез. Сыктывкар, 1997, 208 с.) и гидролизуют водой. Получают 3-метил-3-гидрокси-5(2’-гидроксиэтил)-ундекан (1) и 3-метил-3-гидрокси-6(гидроксиметил)додекан (2) с общим выходом 51% в соотношении (1):(2) ~1:3.

Спектр ЯМР 13С (, м.д.) 3-метил-3-гидрокси-5(2’-гидроксиэтил)-ундекан (1): 8.47 (С1), 35.11 (С2), 73.98 (С3), 43.16 (С4), 36.48 (С5), 34.90 (С6), 28.01 (С7), 29.66 (С8), 31.93 (С9), 22.67 (С10), 14.06 (С11), 26.48 (С12), 42.13 (С13), 63.56 (С14).

Спектр ЯМР 13С (, м.д.) 3-метил-3-гидрокси-6(гидроксиметил)-додекан (2): 8.47 (С1), 35.11 (С2), 74.61 (С3), 38.67 (С4), 34.91 (С5), 38.48 (С6), 36.93 (С7), 27.64 (С8), 28.87 (С9), 31.93 (С10), 22.69 (С11), 14.06 (С12), 26.42 (С13), 65.03 (С14).

Другие примеры, подтверждающие способ, приведены в таблице.

Реакции проводили при комнатной температуре (20-22°С) в гексане. Соотношение продуктов (1):(2)~1:3.

Формула изобретения

Способ совместного получения 1,1,3-триалкил-1,5-пентандиолов и 1,1,4-триалкил-1,5-пентандиолов общей формулы

где значения R, R1 и R2 в формулах (1) и (2) одинаковые и выбираются из R=н-С4Н9, н-С6Н13, R1=СН3, С2Н5, R2=C2H5, н-C4H9,

отличающийся тем, что проводят в атмосфере инертного газа взаимодействие -олефина общей формулы

где R=н-C4H9, н-С6Н13, с триэтилалюминием в присутствии катализатора - цирконацендихлорида Cp2ZrCl2 в мольном соотношении

:AlEt3:Cp2ZrCl2=10:(10-14):(0,3-0,7) при комнатной температуре, затем охлаждение реакционной смеси, добавление катализатора - однохлористой меди и кетона формулы R1C(O)R2, где R1=СН3, С2Н5, R2=C2H5, н-C4H9, в мольном соотношении CuCl:R1C(O)R2=(0,8-1,2):(10-14), и перемешивание при комнатной температуре, с последующим окислением реакционной массы и гидролизом.



 

Похожие патенты:

Изобретение относится к усовершенствованному способу дистилляционного выделения высокочистого моноэтиленгликоля из продукта гидролиза оксида этилена путем обезвоживания в каскаде для обезвоживания под давлением, в котором, по меньшей мере, первая колонна содержит отгонную секцию, по меньшей мере, с одной разделительной стадией и в которой температура ниже точки питания колонны для обезвоживания под давлением составляет выше 800С, а давление в отгонной секции равно не менее 1 бар, с удалением части головного потока из системы, затем обезвоживанием под вакуумом, с отводом водного потока, содержащего моноэтиленгликоль в концентрации менее 1 мас.%, предпочтительно 0,1 мас.%, среднекипящие компоненты и низкокипящие компоненты, с удалением его из системы, возможно, после дальнейшей переработки, с последующей дистилляционной очисткой в колонне дистилляционной очистки, в которой между отбором головного потока из верха колонны и боковым отводом моноэтиленгликоля расположено от 1 до 10 разделительных стадий, при этом обезвоживание под вакуумом осуществляют в двух колоннах для обезвоживания под вакуумом с отводом вышеуказанного водного потока в виде головного потока второй колонны для обезвоживания под вакуумом, или в одной колонне для обезвоживания под вакуумом с отводом вышеуказанного водного потока из колонны обезвоживания под вакуумом в виде бокового потока, а головной поток колонны дистилляционной очистки моноэтиленгликоля возвращают в среднюю часть колонны для обезвоживания под вакуумом или последней колонны для обезвоживания под вакуумом

Изобретение относится к усовершенствованному способу разделения многоатомных спиртов, например неопентилгликоля или этриола, и формиата натрия или кальция, включающему добавление к смеси разделяемых веществ органического растворителя, в котором многоатомный спирт растворяется, кристаллизацию формиата натрия или кальция, отделение формиата натрия или кальция от раствора многоатомного спирта в органическом растворителе, например, фильтрованием, рециркуляцию органического растворителя, охлаждение раствора и кристаллизацию многоатомного спирта, причем в качестве органического растворителя используют растворитель ароматического ряда, например толуол, при этом после добавления к смеси разделяемых веществ органического растворителя полученную смесь нагревают до температуры кипения и производят при этой температуре одновременно: обезвоживание смеси отгонкой воды с рециркуляцией отделенного от воды органического растворителя, кристаллизацию нерастворенного в органическом растворителе формиата натрия или кальция и растворение в органическом растворителе многоатомного спирта

Изобретение относится к усовершенствованному способу получения алкиленгликолей, которые могут быть использованы в композициях антифризов, в качестве растворителей и в качестве базовых материалов при получении полиалкилентерефталатов

Изобретение относится к новому способу совместного получения 1,3-диалкил-1,5-пентандиола формулы (1) и 1,4-диалкил-1,5-пентандиола формулы (2), где значения R и R1 в формулах (1) и (2) одинаковые и выбираются из R=н-С4Н9, н-С6Н13; R1=СН3, н-С3Н7, которые могут применяться в фармацевтической, косметической, текстильной, пищевой, лакокрасочной отраслях промышленности, а также в производстве антифризов, гидравлических жидкостей, взрывчатых эфиров азотной кислоты

Изобретение относится к способу очистки отработанного антифриза на основе водно-этиленгликолевого раствора, используемого для охлаждения двигателей внутреннего сгорания, от продуктов окисления этиленгликоля, продуктов коррозии и механических примесей

Изобретение относится к вариантам способа получения гликолей, таких как этиленгликоль и пропиленгликоль, которые широко используются в качестве исходных материалов при производстве сложных или простых полиэфиров, антифризов растворов поверхностно-активных веществ, а также в качестве растворителей и исходных материалов в производстве полиэтилентерефталатов

Изобретение относится к способу получения алкиленгликолей, которые используются в качестве сырья при получении сложных полиэфиров, простых полиэфиров, антифриза, растворенных поверхностно-активных веществ и в качестве растворителей и основных материалов при получении полиэтилентерефталатов

Изобретение относится к способу получения алкиленгликолей, используемых в композициях антифризов, в качестве растворителей и исходных веществ в производстве полиалкилентерефталатов

Изобретение относится к новому способу совместного получения 1,3-диалкил-1,5-пентандиола формулы (1) и 1,4-диалкил-1,5-пентандиола формулы (2), где значения R и R1 в формулах (1) и (2) одинаковые и выбираются из R=н-С4Н9, н-С6Н13; R1=СН3, н-С3Н7, которые могут применяться в фармацевтической, косметической, текстильной, пищевой, лакокрасочной отраслях промышленности, а также в производстве антифризов, гидравлических жидкостей, взрывчатых эфиров азотной кислоты

Изобретение относится к усовершенствованному способу получения алк-4Z-ен-1-олов общей формулы (1): где R=н-С6Н13, H-C8H17, H-C9H19, которые могут найти применение в тонком органическом синтезе, в производстве лакокрасочных материалов, душистых веществ, феромонов насекомых, биологически активных веществ

Изобретение относится к способу получения цитронеллола - душистого вещества, а также полупродукта в синтезе ряда других душистых веществ

Изобретение относится к органической химии, в частности к усовершенствованию способа получения 1,4-бутандиола

Патент // 365350

Изобретение относится к способу получения оптически активного спирта [(2S)транс]-1S,5S-6,6-диметилцикло[3.1.1]гептан-2-ил-метанола общей формулы (1): который применяют в тонком органическом и металлоорганическом синтезе

Изобретение относится к способу получения оптически активных спиртов [(3R)-эндо]- и [(3S)-экзо]-1R,4S-2,2-диметилцикло[2.2.1]гептан-3-ил-метанолов общей формулы (1): которые используются при получении энантиомерно чистых продуктов с высокими оптическими выходами

Изобретение относится к усовершенствованному способу очистки и выделения водно-гликолевого раствора из отработанных антифризов для приготовления охлаждающих жидкостей и низкозамерзающих теплоносителей, включающему добавление коагулянта к отработанному антифризу, последующее фильтрование через песчаный фильтр, затем очистку на адсорбенте – активированном угле, причем после добавления коагулянта дополнительно осуществляют стадию центрифугирования на сепараторе, а в качестве коагулянта продуктов окисления и коррозии в отработанном антифризе используют гидроксид щелочного металла, 75%-ную ортофосфорную кислоту, карбонат щелочного металла и сульфат натрия, при следующем соотношении компонентов, мас.%: гидроксид натрия (каустическая сода) или калия 0,01-1,0; ортофосфорная кислота 75%-ная 0,02-1,6; карбонат натрия или калия (поташ) 0,05-0,5; сульфат натрия 0,01-0,07; гликоли 40,0-90,0; вода, продукты окисления и коррозии остальное

Изобретение относится к способу дистиллятивного получения моноэтиленгликоля высокой чистоты из продукта гидролиза окиси этилена при помощи отпарки воды под давлением, вакуумной отпарки воды и последующей дистиллятивной очистки, отличающийся тем, что по крайней мере первая колонна отпарки под давлением в каскаде оснащена блоком отгона, имеющим по крайней мере одну ступень разделения, и часть потока верха колонны (колонн) отпарки воды под давлением, оснащенной(ных) блоком отгона, выводится из процесса, при этом температура в зоне ниже точки ввода питания в первую колонну каскада составляет более 80С, и давление в блоке отгона составляет по крайней мере 1 бар
Наверх