Способ прямого преобразования тепловой энергии в электрическую

 

Изобретение относится к устройствам преобразования одного вида энергии в другой и может использоваться для получения электроэнергии без затраты топлива за счет тепловой энергии окружающей среды. Технический результат - повышение коэффициента преобразования энергии с одновременным упрощением реализации способа. Согласно изобретению осуществляют цикл заряд-разряд алюминийоксидных конденсаторов с определенными временными параметрами сигнала заряда и цикла заряда-разряда. За счет поглощения тепловой энергии окружающей среды получаемое количество электроэнергии больше затраченного. Изобретение может использоваться в технике и быту для уменьшения расхода электроэнергии. 1 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам преобразования одного вида энергии в другой и может использоваться для получения электроэнергии без затраты топлива за счет тепловой энергии окружающей среды.

Известны способы емкостного преобразования тепловой энергии в электроэнергию путем осуществления цикла заряд-разряд батареи конденсаторов, при которых за счет изменения диэлектрической проницаемости (в цикле заряд-разряд конденсатора возможно получение дополнительной электрической энергии (см. Н.Е.Заев, "Журнал русской физической мысли". 1991, №1, с. 49-52) (1). Из указанного источника информации установлено, что третий член энергии U в единице объема U=U0(T)+1/20 Е2+l/2Td /dT E2 имеет вид тепловой энергии Т[0 Е2/2dt]=Т (теплоемкость) или электрической энергии 0Е2/ 2[d /dTT]=0 хE2/2 (см. Б.Б.Голицын, "Ученые записи Московского университета". 1895, №10, Избранные труды 1 М 1960 г.). Из этого следует, что при осуществлении цикла заряд-разряд специальных конденсаторов-варикондов возможно преобразование тепловой энергии в электрическую энергию. Более подробно этот процесс рассмотрен в статье Емкость - конвертор тепла среды в электроэнергию , Н.Е.Заев, Ю.С.Спиридонов, Журнал Электротехника. 1998, №12, с.53-55.

К недостаткам данного способа можно отнести использование специальных конденсаторов-варикондов, изменение (процентное) емкости которых за счет изменения диэлектрической проницаемости незначительно, что не позволяет использовать способ (и устройство его реализующее) в промышленных масштабах.

Технический результат - повышение коэффициента преобразования энергии с одновременным упрощением реализации способа.

Указанный результат достигается тем, что в качестве конденсаторов используются алюминиевые - оксидные, заряд осуществляется однополярными импульсами напряжения, передний фронт которых имеет наклон менее 90 , а задний фронт - более 90 , при этом отношение длительности импульсов напряжения к длительности процесса заряда составляет от 2 до 5, а после окончания процесса заряда формируют паузу, определяемую соотношением =1/RC 10-3 (сек), где ( - время паузы, R - сопротивление нагрузки (Ом), С - емкость конденсатора (фарада), после чего осуществляют разряд конденсатора на нагрузку, время которого равно длительности однополярного импульса напряжения.

Дополнительной особенностью способа является то, что после окончания разряда формируют дополнительную паузу. Рассмотрим физические основы работы согласно способу. Согласно B.C.НЕЛЕПЕЦ "Электрические конденсаторы" Госиздат по вопросам радио. - М., 1937, с. 5. Емкость конденсатора определяется по формуле С=0,08 S/d, где S - поверхность обкладок, d - толщина диэлектрика, - диэлектрический коэффициент. Авторами изобретения установлено, что при указанных параметрах цикла заряд-разряд в электрических конденсаторах алюминий-оксид, наиболее распространенных сейчас, происходит изменение S-поверхности электродов за счет заполнения электролитом микронеровностей и уменьшается d - расстояние между электродами, что позволяет фактически заряжать большую, чем номинальная емкость.

На фиг.1 приведен вид однополярного импульса сигнала и временные диаграммы цикла заряд-разряд конденсатора.

На фиг.2 - общая схема цикла заряд-разряд конденсатора.

Под действием управляющего сигнала конденсатор (или батарея конденсаторов) подключается к источнику однополярных импульсов напряжения, передний фронт импульсов имеет угол наклона <90 , а задний фронт с углом наклона >90 . На время заряда Тз конденсатор подключается к источнику однополярных импульсов напряжения (поз. 1 фиг.2) далее следует Тп - пауза (поз. 2 фиг.2) и Тр - разряд конденсатора (поз. 3 фиг.2). Во время заряда под действием электростатики электролит начинает проникать в микронеровности обкладок конденсатора. Этот процесс продолжается в течение паузы после окончания заряда. Отсутствие паузы приводит к тому, что у электролита нет времени проникнуть в микронеровности, изменяя поверхность электрода и уменьшая толщину диэлектрика, что приводит к увеличению емкости и положительного эффекта не наблюдается.

При разряде конденсатор отдает запасенную энергию. При этом согласно (1) тепловая энергия окружающей среды переходит в электрическую энергию, т.к. температура обкладок конденсатора снижается и они нагреваются (поддерживают температуру) за счет тепловой энергии окружающей среды. При этом из-за большой теплопроводности материалов охлаждение самого конденсатора незначительно.

Необходимо отметить, что однополярные импульсы напряжения могут иметь не только треугольную форму, главное, чтобы передний и задний фронты не были 90 , т.е. импульсы не должны быть прямоугольной формы. При проведении эксперимента использовались импульсы, полученные в результате двухполупериодного выпрямления сигнала сети 50 Гц. Работа на чисто активную нагрузку показала, что дополнительно получаемая электрическая энергия составляет около 15%. Другие типы конденсаторов не дают указанного эффекта. Изобретение может найти широкое применение в технике и быту для уменьшения расхода электроэнергии, потребляемой из сети.

Формула изобретения

1. Способ прямого преобразования тепловой энергии в электрическую, заключающийся в том, что осуществляют цикл заряд-разряд алюминиевых оксидных конденсаторов, причем заряд осуществляется однополярными импульсами напряжения, передний фронт которых имеет наклон менее 90, а задний фронт более 90, при этом отношение длительности импульсов напряжения к длительности процесса заряда составляет 2 - 5, после окончания процесса заряда формируют паузу, определяемую соотношением т = 1/RC10-3 с, где т - длительность паузы, R - сопротивление нагрузки, Ом, С - емкость конденсатора, Ф, после чего осуществляют разряд конденсатора на нагрузку, время которого определяется длительностью однополярных импульсов напряжения.

2. Способ по п.1, отличающийся тем, что после окончания разряда формируют дополнительную паузу.

РИСУНКИРисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к машиностроению, в частности к вращательным устройствам с постоянными магнитами

Изобретение относится к области нелинейных конденсаторов, согласно изобретению емкостной конвертор представляет собой нелинейную по напряжению емкость с нелинейным диэлектриком, в качестве которого используют органический пироэлектрический диэлектрик с сегнетоэлектрической поляризацией, способный в цикле заряд и разряд увеличивать проницаемость от 0 ~ 1,2 до v ~ 8 в переменном поле Е так, что обеспечивая тем самым >1, где Wp - мощность при разряде, W3 - модность при заряде

Изобретение относится к области электроэнергетики и может найти применение в двигателях и других машинах, используемых в различных областях хозяйственной деятельности человека

Изобретение относится к сильноточной технике, а именно к каскадным взрывомагнитным генераторам, и может быть использовано в физике твердого тела и физике плазмы

Изобретение относится к области мощных импульсных источников электромагнитной энергии, в основе которых заложен эффект кумуляции магнитной энергии, к магнитокумулятивным генераторам (МКГ)

Изобретение относится к электроэнергетическим системам на базе топливных элементов

Изобретение относится к электроэнергетическим системам на базе топливных элементов

Изобретение относится к преобразованию химической энергии взрывчатого вещества в электромагнитную энергию

Изобретение относится к области электротехники, к устройствам для получения импульса электромагнитной энергии на основе эффекта магнитной кумуляции и магнитокумулятивным или взрывомагнитным генераторам

Изобретение относится к области техники получения и формирования ударных волн при разработке устройств для многоточечного инициирования зарядов взрывчатого вещества (ВВ) и может быть использовано в различных областях технической физики, например в спиральных взрывомагнитных генераторах (СВМГ) для генерации энергии мегаджоулевого уровня и во взрывных обострителях тока (ВОТ) для формирования мультимегаамперных импульсов тока с временем нарастания в микросекундном диапазоне

Изобретение относится к энергетическим установкам (ЭУ), содержащим электрохимический генератор (ЭХГ) с водородно-кислородными топливными элементами, и может быть использовано в составе электроэнергетической системы (ЭЭС) подводного аппарата (ПА)

Изобретение относится к области нелинейных конденсаторов, согласно изобретению емкостной конвертор представляет собой нелинейную по напряжению емкость с нелинейным диэлектриком, в качестве которого используют органический пироэлектрический диэлектрик с сегнетоэлектрической поляризацией, способный в цикле заряд и разряд увеличивать проницаемость от 0 ~ 1,2 до v ~ 8 в переменном поле Е так, что обеспечивая тем самым >1, где Wp - мощность при разряде, W3 - модность при заряде

Изобретение относится к способам беспроволочной передачи электрической энергии и может быть использовано в качестве средства передачи электрических зарядов без проводов

Изобретение относится к области энергетики, в частности к преобразователям тепловой энергии в электрическую, и может использоваться при создании преобразователей прямого действия, преобразующих тепловую энергию непосредственно в электрическую с высоким коэффициентом полезного действия

Изобретение относится к устройствам и способам преобразования химической энергии в электрическую согласно изобретению

Изобретение относится к области прямого преобразования химической энергии в электрическую, в частности, в химических источниках тока

Изобретение относится к автономным или индивидуальным источникам малой мощности длительного действия

Изобретение относится к источникам тока на биохимической основе

Изобретение относится к источникам электроэнергии с непосредственным преобразованием тепла в электричество и может быть использовано при создании автономных солнечных источников электроэнергии, в том числе космического назначения

Изобретение относится к гальваносорбционному реакционному элементу с замкнутым кругооборотом веществ для преобразования низкотемпературного тепла, предпочтительно, тепловых отходов в полезную электрическую работу
Наверх