Магнитный подшипник

 

Магнитный подшипник содержит ротор из магнитного материала, присоединенный к валу, статор из магнитного материала, расположенный напротив ротора, и подвижный элемент из магнитного материала, установленный между ними. Подвижный элемент подшипника выполнен в виде шариков, свободно расположенных в коаксиальных каналах с демпфирующей жидкостью, выполненных в неподвижном корпусе. Корпус может быть выполнен герметичным. Изобретение позволяет эффективно гасить колебания вала, упрощает сборку подшипника и предотвращает миграцию частиц масла за пределы подшипника. 2 з. п. ф-лы, 5 ил.

Изобретение относится к машиностроению и, преимущественно, к магнитному подшипнику вертикального вала.

Известен магнитный подшипник вертикального вала, в котором кольцевой радиально подвижный элемент, расположенный в зазоре между торцами статорного и роторного магнитов, шарнирно связан с корпусом посредством вертикальных жестких стержней, а демпфирующее и упругое звенья, соединяющие радиально подвижный элемент с корпусом, расположены вне зазора на периферии подвижного элемента [Япония, пат. №53-25898, F 16 C 32/04, опубл. 29.07.78.].

Наиболее близким к предлагаемой опоре является магнитный подшипник вала с вертикальной осью вращения, содержащий закрепленный коаксиально на валу первый кольцевой аксиально намагниченный магнит, второй кольцевой магнит, неподвижно установленный в корпусе с зазором над первым магнитом, и размещенный в зазоре радиально подвижный кольцевой элемент из ферромагнитного материала, установленный в демпфирующей жидкости [Япония, пат. №52-27779, F 16 C 32/04, опубл. 22.07.77.].

При радиальных колебаниях вала за счет магнитной связи радиально подвижного элемента и закрепленного на валу магнита подвижный элемент, катаясь на шариках, будет следовать за радиальными перемещениями вала. При этом радиальным отклонениям вала противодействуют силы торможения подвижного элемента в вязкой среде и упругие силы, обусловленные наличием поперечной жесткости в магнитном подшипнике и упругой подвеске радиально подвижного элемента.

Однако в данной магнитной опоре наличие массивного подвижного элемента ограничивает область эффективного гашения колебаний вала, а частицы масла, удерживаемого только капиллярным действием в осевом зазоре между радиально подвижным элементом и торцом статорного магнита, могут осуществлять миграцию за пределы демпфера и нарушить работу вращающегося вала.

Задачей настоящего изобретения является создание конструкции магнитного подшипника, позволяющего эффективно гасить колебания вала, упростить сборку и исключить миграцию частиц демпфирующей жидкости из демпфера.

Техническим результатом изобретения является повышение эффективности подавления колебаний вала на различных частотах, простота конструкции и возможность работы в вакуумной полости.

Сущность изобретения заключается в том, что в магнитном подшипнике, содержащем ротор из магнитного материала, присоединенный к валу, статор из магнитного материала, расположенный напротив ротора, и подвижный элемент из ферромагнитного материала, установленный между ними, подвижный элемент выполнен в виде шариков, свободно расположенных в одном или нескольких кольцевых коаксиальных каналах с демпфирующей жидкостью, выполненных в неподвижном корпусе.

Кроме того, корпус может быть выполнен герметичным.

Дополнительно, между шариками могут быть установлены разделители из немагнитного материала.

Изобретение поясняется чертежами, на которых схематично изображено:

фиг.1 - вертикальный разрез магнитного подшипника;

фиг.2 - разрез А-А на фиг.1;

фиг.3 - вариант выполнения подшипника с коаксиальными каналами;

фиг.4 - разрез Б-Б на фиг.3;

фиг.5 - вариант выполнения подшипника с разделителями.

Магнитный подшипник содержит ротор 1 из магнитного материала, например из стали, присоединенный к валу 2, статор 3 из магнитного материала, например, в виде постоянного магнита, расположенный напротив ротора 1, и подвижный элемент, выполненный в виде шариков 4 из магнитного материала, например, в виде стальных шариков шарикоподшипника, установленных в зазоре между ротором 1 и статором 3. Шарики 4 свободно расположены в кольцевом канале 5 с демпфирующей жидкостью, например с маслом, выполненном в неподвижном корпусе 6, закрытом крышкой 7.

В варианте выполнения подшипника, показанном на фиг.3 и 4, в корпусе 6 выполнено несколько коаксиально расположенных кольцевых каналов 5 с демпфирующей жидкостью, в которых размещены шарики 4. В этом варианте статор 3 выполнен в виде электромагнита с обмоткой 8.

Крышка 7 может герметично закрывать каналы 5 с демпфирующей жидкостью, например может быть закреплена сваркой 9 на корпусе 6.

В другом варианте выполнения подшипника, показанном на фиг.5, в каналах 5 между шариками 4 установлены разделители 10 из немагнитного материала.

При колебаниях вала 2 ротор 1 подшипника отклоняется от оси неподвижного статора 3. Шарики 4 под действием магнитной силы от ротора 1 перемещаются в каналах 5 в направлении перемещения ротора. При движении шариков 4 в демпфирующей жидкости (масле) в каналах 5 возникают силы вязкого трения, которые препятствуют перемещениям шариков и связанного магнитной связью с ними ротора и подавляют колебания последнего. Так как масса каждого шарика незначительна, конструкция обеспечивает гашение колебаний вала на различных частотах, что повышает эффективность работы магнитного подшипника в различных режимах.

При герметичном исполнении корпуса 6 подшипника последний может устанавливаться в вакуумные камеры различных приборов, использующих вращающиеся валы на магнитных подшипниках, без нарушения их вакуума во время работы, так как герметичный корпус полностью исключает миграцию частиц масла за пределы конструкции демпфера.

Во время работы подшипника при действии осевых симметричных полей от статора 3 и ротора 1 шарики 4 равномерно распределяются магнитными силами по окружности кольцевого канала 5. При действии несимметричных радиальных магнитных полей или во время монтажа корпуса с шариками в магнитную систему подшипника может произойти нарушение равномерности распределения шариков 4 по каналу 5 и возможно слипание шариков 4 в одну или несколько групп, что нарушит эффективную работу подшипника. Для предотвращения слипания шариков 4 между ними устанавливаются немагнитные разделители 10, например из пластмассы, которые полностью исключают возможность неравномерного распределения шариков 4 по каналам 5, которая могла бы привести к нарушению работы подшипника.

Поскольку высота корпуса 6 с шариками 4 определяется диаметром шариков 4 и толщиной дна и крышки 7 корпуса, то эта сборка практически представляет собой шайбу толщиной 1 - 5 мм для шариков диаметром 0,5 - 4 мм, что существенно упрощает сборку магнитного подшипника с демпфирующим элементом.

Формула изобретения

1. Магнитный подшипник, содержащий ротор из магнитного материала, присоединенный к валу, статор из магнитного материала, расположенный напротив ротора, и подвижный элемент из магнитного материала, установленный между ними, отличающийся тем, что подвижный элемент выполнен в виде шариков, свободно расположенных в одном или нескольких кольцевых коаксиальных каналах с демпфирующей жидкостью, выполненных в неподвижном корпусе.

2. Магнитный подшипник по п.1, отличающийся тем, что корпус выполнен герметичным.

3. Магнитный подшипник по пп.1 и 2, отличающийся тем, что между шариками установлены разделители из немагнитного материала.

РИСУНКИРисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к области приборостроения и предназначено для использования в электромеханических устройствах на переменном токе для демпфирования поступательных и угловых колебаний тел, статическое или динамическое состояния которых заданы магнитным или электрическим полями соответственно электромагнитов или электродов, питаемых переменным током

Изобретение относится к верхней магнитной опоре ротора с вертикальной осью вращения

Изобретение относится к приборостроению - к магнитным системам фиксации подвижных узлов измерительных устройств

Изобретение относится к устройствам для бесконтактного центрирования или удерживания массы во взвешенном состоянии

Изобретение относится к магнитным подшипникам и, в частности, к упорным магнитным подшипникам

Изобретение относится к машиностроению, а именно к бесконтактным опорным узлам с электромагнитными подшипниками, и может быть использовано при создании крупных трансмиссионных высокооборотных агрегатов, например, газоперекачивающих (ГПА) или турбодетандерных (ТДА)

Изобретение относится к бесконтактным опорным устройствам с электромагнитными подшипниками и может быть использовано при создании, например, газоперекачивающих агрегатов и других высокооборотных машин с активным магнитным подвесом роторов

Изобретение относится к машиностроению и, преимущественно, к магнитным опорам вертикальных роторов быстровращающихся приборов, накопителей энергии, центрифуг, в которых верхняя магнитная опора ротора обеспечивает радиальную жесткость и центровку ротора относительно корпуса и, одновременно, разгружает нижнюю опору от осевой нагрузки

Изобретение относится к электромеханическим устройствам, предназначенным для использования в качестве бесконтактных опор (магнитных подшипников) ротора различных машин, например газоперекачивающих агрегатов и других высокоскоростных машин, работающих в экстремальных условиях и в особо чистых средах

Изобретение относится к подшипниковым устройствам машин с вращающимся ротором

Изобретение относится к устройствам вращения, предназначенным для работы в условиях микрогравитации и невесомости

Изобретение относится к бесконтактным опорным устройствам с электромагнитными подшипниками для крупных компрессоров газоперекачивающих агрегатов природного газа

Изобретение относится к области машиностроения и может быть использовано в качестве опор быстровращающихся маховиков инерционных накопителей энергии

Изобретение относится к области машиностроения и может быть использовано в электротехнике

Изобретение относится к верхним магнитным опорам высокооборотных роторов с вертикальной осью вращения, посредством которых роторы удерживаются в вертикальном положении, например, роторов накопителей энергии, центрифуг, гироскопов и подобных устройств

Изобретение относится к области прецизионного приборостроения и может быть использовано в системах управления и стабилизации летательных аппаратов, а также в любой отрасли машиностроения, в которой требуется уменьшение трения и исключение смазочных материалов, например при работе в вакууме и в условиях низких температур
Наверх