Подводный дыхательный аппарат

 

Подводный дыхательный аппарат содержит рабочий блок с химическим источником кислорода, маску и дыхательную трубку, соединяющую маску с рабочим блоком. Рабочий блок выполнен в виде открытой снизу емкости, снабженной расположенной в верхней части этой емкости решеткой для размещения на ней химического источника кислорода в виде брикета вещества, выделяющего кислород при взаимодействии с водой, стабилизатором вертикального положения, индикатором отработки источника кислорода и газовым отводом для дыхательной трубки. Стабилизатор вертикального положения выполнен в виде трубки с газовой емкостью на верхнем конце и прозрачным нижним концом. Индикатор расположен в упомянутой прозрачной части трубки и поджат пружиной к верхнему торцу указанного брикета. Такое выполнение аппарата обеспечивает снижение его массообъемных характеристик, снижение ассортимента расходуемых продуктов, упрощение их состава и индикацию отработки продукта. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к подводным дыхательным аппаратам индивидуального типа, использующим химические источники кислорода. Аппарат предназначен для погружения и работы под водой на малых средних глубинах.

В настоящее время широко используется аппарат с баллонами на сжатом воздухе с открытой схемой дыхания (акваланг). Для наполнения баллонов акваланга необходима привязка к воздушным компрессорным установкам. Перевозить заполненные баллоны на большие расстояния независимо от вида транспорта запрещено. Длительное хранение заполненных баллонов затруднительно из-за утечек и небезопасно из-за высокого давления, кроме того, баллоны должны подвергаться периодическому освидетельствованию через каждые 5 лет. Масса и объем акваланга, как правило, велики и неудобны для транспортирования по суше. Акваланг сложен в изготовлении (баллоны, автомат подачи воздуха) и поэтому стоит очень дорого. Все вместе взятое делает его малодоступным для рядового туриста (Справочник водолаза/ Под общ. ред. Е.П.Шиканова. - М.: Воениздат, 1973, стр. 88).

Известны шахтерские респираторы для горноспасателей, которые в принципе могут быть использованы для погружения в воду. В качестве источника кислорода в этом аппарате применяется сжатый кислород, а в качестве поглотителя углекислого газа - химический поглотитель известковый (ХПИ). Массогабаритные характеристики респиратора также велики [Диденко Н.С. Регенеративные респираторы для горноспасательных работ. - М.: Недра, 1984, стр. 156].

Наиболее близким по технической сущности и достигаемому результату к предлагаемому аппарату является кислородный изолирующий дыхательный аппарат типа ИДА-64 с замкнутым циклом дыхания (Справочник водолаза/ Под общ. ред. Е.П.Шиканова. - М.: Воениздат, 1973, стр. 71).

Аппарат содержит рабочий блок, состоящий из регенеративных коробок с химическим источником кислорода на основе надперекиси калия и дыхательного мешка, баллон с кислородом, трубки вдоха и выдоха, клапанную коробку и маску.

Включение в аппарат осуществляется после полного удаления из мешка воздуха и заполнения его чистым кислородом из баллона. Включаясь, следует сделать полный выдох в атмосферу, после чего начать дышать в аппарат. Выдыхаемая газовая смесь из клапанной коробки поступает в регенеративные коробки. Проходя через вещество, она очищается от углекислого газа и обогащается кислородом. Очищенная смесь поступает в дыхательный мешок готовой для очередного вдоха. При недостатке газовой смеси в мешке во время погружения и в других случаях она пополняется чистым кислородом из баллона дыхательным автоматом. Давление в кислородном баллоне контролируется по выносному манометру. Избыток газовой смеси при уменьшении глубины вытравливается из мешка травяще-предохранительным клапаном. В качестве химических продуктов используются хемосорбционные блоки на основе перекисного соединения и поглотителя углекислого газа ХПИ.

Недостатками этого аппарата являются относительно высокие массо-объемные характеристики, затрудняющие транспортабельность аппарата с запасом химических продуктов (запасом кислорода) по суше. Кроме того, использование целого набора дефицитных переснаряжаемых компонентов фактически исключает возможность переснаряжения аппарата в полевых условиях. Существенным недостатком ИДА является также принципиальная невозможность контроля отработки продукта, т.е. времени защитного действия аппарата. Все это делает недоступным использование этого аппарата в массовом масштабе.

Указанные недостатки аппарата ИДА обусловлены тем, что хемосорбционная схема работы химических продуктов предъявляет особые требования к их составу и структуре. В результате резко снижается количество выделяемого кислорода от теоретического, степень уплотнения продуктов, и фактически невозможен контроль отработки (время защитного действия аппарата). Технология изготовления химических продуктов усложнена, что приводит к их удорожанию.

Задачей изобретения является снижение массообъемных характеристик аппарата, снижение ассортимента расходуемых продуктов, упрощение их состава и индикация отработки продукта.

Задача решается предлагаемым изобретением, согласно которому в аппарате, включающем рабочий блок с химическим источником кислорода, маску и дыхательную трубку, рабочий блок выполнен в форме открытой снизу емкости, снабженной газовым отводом для дыхательной трубки, стабилизатором вертикального положения и индикатором отработки источника кислорода.

В качестве химического источника кислорода используются надперекиси щелочных металлов или перекиси щелочно-земельных металлов или продукты на их основе.

Сущность изобретения поясняется чертежом. На чертеже изображен общий вид аппарата в разрезе. Аппарат содержит маску 1, фильтр 2, дыхательную трубку 3, выполненную в теплоизоляционном исполнении, и рабочий блок 4 с брикетом химического источника кислорода 5. Теплоизоляция дыхательной трубки 3 необходима для подогрева вдыхаемого воздуха. В верхней части рабочего блока 4 имеется стабилизатор 6 вертикального положения рабочего блока 4. Стабилизатор 6 представляет собой трубку 7, на верхнем конце которой имеется газовая емкость 8. Элементы стабилизатора 7 выполнены из материала с плотностью меньше единицы (полипропилен, полиэтилен). Нижний конец трубки 7 сделан прозрачным с целью фиксации положения индикатора отработки 9, прижатого пружиной к верхнему торцу брикета. Брикет 5 расположен на решетке в верхней части емкости рабочего блока 4. Нижняя часть рабочего блока 4 выполнена из материала с плотностью больше единицы (сталь) и открыта для сообщения с водной средой. Верхняя часть рабочего блока 4 всегда имеет положительную плавучесть (всплывает), нижняя часть блока имеет отрицательную плавучесть (тонет).

Масса рабочего блока 4 сбалансирована таким образом, чтобы средняя результирующая плавучесть его при дыхании была немного положительной. При этом центр результирующей подъемной силы, расположенной по вертикали рабочего блока 4, всегда выше центра тяжести. Благодаря такой конструкции рабочий блок 4 всегда занимает в воде устойчивое вертикальное положение и при случайных колебаниях или наклонах автоматически быстро возвращается в исходное вертикальное положение по принципу "Ваньки-встаньки".

Рабочий блок 4 соединен с маской 1 гибкой дыхательной трубкой 3 с краном 10 и крепится к поясу или спине тросиком 11 (~0,6 м). Такое крепление рабочего блока обеспечивает пловцу достаточную свободу для кантования при сохранении блока 4 в вертикальном положении. Вертикальное положение блока 4 дает также надежную ориентацию пловца в пространстве.

Роль дыхательного мешка выполняет частично гибкая газовая емкость 8 стабилизатора 6 и частично колебание жидкости в нижней части рабочего блока 4.

Аппарат имеет также сборник осадка соды 12. Дыхательная смесь из аппарата не выбрасывается.

Аппарат работает следующим образом. Для дыхания используется кислород, выделяемый брикетом 5 при его контакте с водой. В качестве химического источника кислорода используются надперекиси щелочных металлов, или перекиси щелочно-земельных металлов, или продукты на их основе. Поглощение углекислого газа осуществляется водным раствором продуктов гидролиза. Аппарат при дыхании работает в автоматическом маятниковом режиме.

Снаряжение аппарата брикетом 6 производится непосредственно перед спуском. Для захода в воду достаточно открыть кран 10 и одеть маску 1 с фильтром 2.

При вдохе вода через открытое снизу пространство входит внутрь рабочего блока 4 и реагирует с брикетом источника 5 с получением кислорода. При избытке кислорода вода вытесняется газом от брикета 5 вниз, и реакция прекращается.

При выдохе газ через дыхательную трубку 3 поступает в рабочий блок 4, жидкость отступает вниз и обеспечивает поглощение углекислого газа с образованием соды. Часть соды растворяется в водной среде, а часть оседает в сборнике 12. Концентрация соды в сбрасываемом растворе много ниже предельно допустимой и таким образом совершенно безопасна для человека.

Контроль степени отработки брикета производится по изменяющейся высоте брикета 5 с помощью индикатора 9.

Для примера брикет 6 из надперекиси натрия массой 250-260 г и объемом 140-150 см3 обеспечивает работу аппарата под водой в течение одного часа. Масса осадка при растворении такого брикета составляет примерно 160 г.

Стабилизатор 6 всегда автоматически устойчиво обеспечивает вертикальное положение всего рабочего блока.

Газовая емкость 8 стабилизатора 6 может быть гибкой и частично выполнять роль дыхательного мешка.

Для исключения непосредственного контакта надперекисного продукта с руками и окружающими предметами при снаряжении брикет 6 герметично покрыт тонким слоем (0,5-2 мм) специального вещества, не влияющего на работоспособность брикета 5 в аппарате. До снаряжения брикеты герметично хранятся в легкой полиэтиленовой таре.

После всплытия перекрывается кран 10 и маска 1 снимается. Процедура переснаряжения аппарата предельно упрощена и сокращена до 1-2 мин.

Длина тросика 11 и место его крепления на теле пловца выбираются из целей удобства.

Указанный принцип действия аппарата проверен экспериментально на макетном образце.

Такое техническое решение дает возможность

1. Использовать надперекись натрия как наиболее эффективный кислородоноситель фактически в чистом виде;

2. Использовать кислородоноситель в предельно компактной (уплотненной) форме;

3. Использовать окружающую водную среду для поглощения углекислого газа и растворения отходов.

4. Использовать выделяемое реакцией тепло для подогрева дыхательной смеси, поступающей на вдох.

В результате существенно снижается масса и объем химического источника кислорода на единицу объема получаемого кислорода. Упрощается конструкция аппарата. По расчетным данным (см. табл.) масса аппарата снижается в 4,7 раза, а объем аппарата - в 2,8 раза. Расходуемая масса продукта, приходящаяся на 1 м3 кислорода, меньше чем для аппарата ИДА в 2,8 раза, а объем - в 4,3 раза. Если бы пришлось перевозить аппараты с запасом продукта (кислорода) на 6 часов работы под водой (запас кислорода 400-411 л), то для предлагаемого аппарата по сравнению с аппаратом ИДА транспортируемая масса необходима в 4 раза меньше, а объем - почти в 2,5 раза меньше.

Вместо трех дефицитных, относительно дорогих расходуемых компонентов (хемосорбционные блоки на основе перекисного соединения, поглотителя ХПИ и сжатого кислорода в баллоне) можно пользоваться одним брикетом из чистой надперекиси натрия или калия. Процедура переснаряжения аппарата упрощается и сокращается (в течение 1-2 мин).

Сравнительная простота конструкции предлагаемого аппарата и отсутствие баллонов делает их изготовление недорогим. По расчетам в 10-30 раз дешевле акваланга и 3-5 раз дешевле аппарата ИДА. Стоимость 1 м3 кислорода, получаемого из брикета надперекиси натрия, становится в 5-8 раз дешевле стоимости кислорода, получаемого в аппарате ИДА.

В результате все перечисленные преимущества предлагаемого аппарата делают его доступным для массового использования.

Формула изобретения

1. Подводный дыхательный аппарат, содержащий рабочий блок с химическим источником кислорода, маску и дыхательную трубку, соединяющую маску с рабочим блоком, отличающийся тем, что рабочий блок выполнен в виде открытой снизу емкости, снабженной расположенной в верхней части этой емкости решеткой для размещения на ней химического источника кислорода в виде брикета вещества, выделяющего кислород при взаимодействии с водой, стабилизатором вертикального положения, индикатором отработки источника кислорода и газовым отводом для дыхательной трубки, при этом стабилизатор вертикального положения выполнен в виде трубки с газовой емкостью на верхнем конце и прозрачным нижним концом, а индикатор расположен в упомянутой прозрачной части трубки и поджат пружиной к верхнему торцу указанного брикета.

2. Подводный дыхательный аппарат по п.1, отличающийся тем, что в качестве химического источника кислорода используются надперекиси щелочных металлов или перекиси щелочноземельных металлов или продукты на их основе.

3. Подводный дыхательный аппарат по п.1, отличающийся тем, что дыхательная трубка выполнена в теплоизоляционном исполнении.

РИСУНКИ



 

Похожие патенты:

Изобретение относится к области водолазного дела и касается конструкции дыхательного аппарата на дыхательных газовых смесях, приготавливаемых самим аппаратом

Изобретение относится к области водолазной техники, а именно к водолазным дыхательным аппаратам регенеративного типа с замкнутой схемой дыхания

Изобретение относится к дыхательным системам для водолазов во время проведения водолазных работ на большой глубине

Изобретение относится к водолазному оборудованию, в частности к устройствам для подачи воздуха водолазу от источника, находящегося у водопада, с замкнутой циркуляцией

Изобретение относится к индивидуальным изолирующим дыхательным аппаратам, обеспечивающим жизнедеятельность человека под водой, а также в атмосфере, не пригодной для дыхания

Изобретение относится к области водолазной техники, а именно к водолазным дыхательным аппаратам регенеративного типа с замкнутой схемой дыхания

Изобретение относится к водолазной технике, а именно к средствам подачи воздуха водолазам

Изобретение относится к индивидуальным изолирующим дыхательным аппаратам, обеспечивающим жизнедеятельность человека в атмосфере, непригодной для дыхания
Наверх