Способ идентификации генных мутаций и полиморфизмов

 

Изобретение относится к области медицины и может быть использовано в молекулярной диагностике. Предложенный способ идентификации генных мутаций и полиморфизмов осуществляют посредством проведения аллель-специфической полимеразной цепной реакции в присутствии депонирующих олигонуклеотидов, комплементарных полиморфным праймерам. Использование изобретения позволяет упростить протокол оптимизации аллель-специфической ПЦР и повысить достоверность получаемых результатов. 2 ил.

Изобретение относится к области медицины, в частности к молекулярной диагностике, молекулярной медицинской генетике, молекулярной онкологии.

Аллель-специфическая полимеразная цепная реакция (ПЦР) является одним из методов прямой детекции известных точковых мутаций и однонуклеотидных полиморфизмов. В основе метода лежит неспособность Taq ДНК-полимеразы к амплификации фрагмента при наличии несоответствия (mismatch) между вариабельным нуклеотидом на матричной ДНК и 3'-концом одного из олигопраймеров (Newton C.R. et al., 1989; Bottema C.D.K. et al., 1990).

Однако при субоптимальных условиях ПЦР зачастую происходит амплификация фрагмента даже в случае подобного несоответствия. Это обстоятельство весьма существенно ограничивает применение аллель-специфической ПЦР (Malcolm E.K. et al., 2000).

Известны следующие способы увеличения достоверности аллель-специфической ПЦР (Sarkar G. et al.,1989; Sommer S.S. et al.,1992):

1) повышение температуры отжига праймеров;

2) снижение количества циклов ПЦР;

3) понижение концентрации ключевых компонентов ПЦР (хлорида магния, нуклеотидов, ДНК-полимеразы, праймеров, исходной матрицы ДНК);

4) добавление в реакцию веществ, неселективно повышающих специфичность ПЦР, так называемых “энхансеров специфичности”: глицерол, тритон Х-100, формамид, диметилсульфоксид и др.;

5) добавление специфичного, но не способного к элонгации праймера, содержащего на 3'-конце дидеоксинуклеотид (ddNTP) (Orou A. et al., 1995).

Наиболее близким к предлагаемому является способ, основанный на уменьшении концентрации праймеров в реакции (Sommer S.S., Groszbach A.R., Bottema C.D.: PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known singlebase changes. // Biotechniques. 1992 Jan; 12(1):82-7). В описываемом способе с целью достижения специфичности реакции используется снижение абсолютных концентраций праймеров в реакции до 0.05 М и менее.

Однако этот способ далеко не во всех случаях позволяет добиться строгой специфичности ПЦР. К тому же, он, как и прочие перечисленные выше способы, имеет существенный недостаток, т.к. значительно уменьшает выход ПЦР-продукта.

Таким образом, в процессе оптимизации аллель-специфической ПЦР требуется эмпирически найти довольно узкий диапазон условий, когда, с одной стороны, их жесткость не позволяет амплифицировать неспецифичный фрагмент, а с другой стороны, не происходит полного подавления реакции. Практика показывает, что выполнение этой задачи сопряжена с серьезными, подчас неразрешимыми трудностями.

Технический результат, достигаемый изобретением, заключается в следующем: упрощение протокола оптимизации аллель-специфической ПЦР, повышение ее достоверности. Это достигается посредством применения обратимого депонирования праймеров при помощи комплементарных депонирующих олигонуклеотидов.

Сущность изобретения заключается в следующем.

В предлагаемом изобретении в каждую из проводимых ПЦР-реакций добавляются депонирующие олигонуклеотидные последовательности, комплементарные аллель-специфическим праймерам. Это позволяет обратимо депонировать часть находящихся в реакции праймеров. В данной системе происходит конкуренция за аллель-специфический праймер между депонирующим олигонуклеотидом и ДНК-матрицей. В случае полной комплементарности между аллель-специфическим праймером и матрицей сразу после отжига праймера происходит его элонгация, что увеличивает сродство праймера к матрице и является началом синтеза амплифицируемого фрагмента (фиг.1, правый верхний фрагмент). В случае неполной комплементарности между аллель-специфическим праймером и матрицей, когда имеется 3'-концевой неспареный нуклеотид и элонгация существенно затруднена, праймер успевает диссоциировать с матрицей, а депонирующый олигонуклеотид, связывая его, препятствует реассоциации с матрицей (фиг.1, правый нижний фрагмент). Таким образом, неспецифическая амплификация предотвращается (фиг.1, левая колонка). Существенным преимуществом данного подхода является то, что депонирование праймеров происходит обратимо, т.к. процесс отжига-плавления праймеров и депонирующих олигонуклеотидов повторяется с каждым циклом ПЦР. Благодаря этому добавление депонирующих олигонуклеотидов в концентрациях, сопоставимых с концентрацией праймеров (соотношение депонирующих олигонуклеотидов к праймерам может варьировать в диапазоне 0.5:1 - 5:1), не отражается критически на кинетике реакции и позволяет использовать обычное число ПЦР-циклов для получения достаточного количества продукта.

Пример осуществления изобретения.

На первом этапе была оптимизирована аллель-специфическая ПЦР фрагмента гена TNF-, содержащего полиморфизм - 308G/A. Для исключения ложных результатов генотипы также были определены с помощью метода ПЦР-ПДРФ (полиморфизма длин рестрикционных фрагментов) (фиг.2). Аллель-специфическая ПЦР включала 2 аллель-специфических праймера [5' - CAATAGGTTTTGAGGGGCATGG - 3'(праймер G); 5' - CAATAGGTTTTGAGGGGCATGA - 3'(праймер А)] для определения полиморфного нуклеотида, а также общий праймер: 5' - CGATGGAGAAGAAACCGAGA - 3'. Основные параметры ПЦР были следующие: 50 нг геномной ДНК, 0.5 ед. модифицированной (heat-activated) Taq ДНК-полимеразы, 10 mM Tris-HCl (рН - 8.3), 50 mМ КСl, 5% глицерол, 1.0 mM MgCl2, 200 М dNTP, 0.125 M каждого из праймеров, конечный объем реакции - 10 1, 30 циклов (95°-35", 60°-1’, 72°-50"). Для данной реакции оптимальными оказались достаточно жесткие условия: высокая температура отжига (t=60°С), низкая концентрация хлорида магния (1.0 mM), низкая концентрация праймеров (0.125 М) и ограниченное число циклов ПЦР (n=30). При релаксации любого из указанных параметров наблюдалась неспецифическая амплификация (фиг.2, левая колонка). С другой стороны, более жесткие условия ПЦР приводили к полному отсутствию продукта (данные не представлены).

Реакции при этих же условиях были проведены в присутствии комплементарных депонирующих олигонуклеотидов (5' - СCATGCCCCTCAAAACCTAT - 3' для праймера G, 5' - ТCATGCCCCTCAAAACCTAT - 3' для праймера А). Концентрация депонирующих олигонуклеотидов была равной концентрации полиморфных праймеров. В обоих случаях, как с депонирующими олигонуклеотидами, так и без них, при жестких условиях наблюдалась только специфическая реакция. Интенсивность фрагментов на полиакриламидном геле после гель-электрофореза была одинаковой.

Далее, эти же реакции были параллельно проведены в релаксированных условиях [сниженная температура отжига (t=55°С), концентрация хлорида магния - 1.5 mM, концентрация праймеров - 0.250 M, большее число циклов ПЦР (n=35)], причем в каждом опыте изменялись как отдельные из указанных параметров, так и все одновременно (фиг.2, правая колонка). В традиционном протоколе аллель-специфической ПЦР при релаксированных условиях во всех случаях наблюдалась неспецифическая реакция, в то время как аллель-специфическая ПЦР в присутствии депонирующих олигонуклеотидов оставалась строго специфичной, без заметного снижения количественного выхода продукта реакции.

Предлагаемое изобретение включает в себя ранее не известный подход к увеличению достоверности аллель-специфической ПЦР, что позволяет повысить эффективность и расширить возможности молекулярно-диагностических методов, основанных на детекции известных единичных нуклеотидных полиморфизмов и точковых мутаций. Предлагаемый способ позволяет расширить диапазон условий, приемлемых для аллель-специфической ПЦР.

Формула изобретения

Способ идентификации генных мутаций и полиморфизмов посредством аллель-специфической полимеразной цепной реакции, отличающийся тем, что аллель-специфическую ПЦР проводят в присутствии депонирующих олигонуклеотидов, комплементарных полиморфным праймерам в соотношении 1:0,5-1:5.

РИСУНКИ



 

Похожие патенты:

Изобретение относится к области медицины и касается способа диагностики индивидуальной чувствительности головного мозга к ишемии

Изобретение относится к области биотехнологии и может быть использовано для определения антирадикальной активности веществ по способности взаимодействия их с радикалами ОН

Изобретение относится к области генной инженерии и молекулярной биологии и может быть использовано при разработке и осуществлении многих методов анализа ДНК

Изобретение относится к медицине и касается способа прогнозирования размеров инфаркта мозга при острых нарушениях мозгового кровообращения

Изобретение относится к биотехнологии и может быть использовано для выделения белков с нужными свойствами из крупных пулов и нуклеиновых кислот (НК)

Изобретение относится к области медицины, а именно к диагностике наличия у субъекта повышенного риска развития атеросклероза и возможного наличия у субъекта-диабетика повышенного риска развития диабетической ретинопатии

Изобретение относится к генетической инженерии и может быть использовано в селекции растений

Изобретение относится к области молекулярной биологии и биоорганической химии и может быть использовано для изготовления ДНК-чипов

Изобретение относится к биотехнологии и может быть использовано для анализа ин витро транскрипции вирусных и клеточных генов

Изобретение относится к области биохимии и может быть использовано при проведении любых анализов, требующих выделения нуклеиновых кислот из комплексных образцов, в частности в медицинской диагностике, судебно-медицинской экспертизе и экспертизе пищевых продуктов

Изобретение относится к биотехнологии, в частности биотехнологии сельскохозяйственных растений

Изобретение относится к генетической инженерии и может быть использовано в терапевтических целях, в частности в терапии опухолевых процессов

Изобретение относится к способам секвенирования и анализа нуклеиновых кислот

Изобретение относится к LNA-модифицированному олигонуклеотиду, включающему по крайней мере один нуклеозидный аналог (LNA) общей формулы I, где X - -О-; В - нуклеотидное основание; Р - место присоединения межнуклеозидного “мостика” или 5’-концевая группа, которую выбирают из гидроксила, монофосфата, дифосфата и трифосфата; R3 или R3* - межнуклеозидный мостик 3’-концевая группа; и R2* и R4* - бирадикал, выбираемый из -(CR*R*)r-O-(CR*R*)s-, -(CR*R*) r-S-(CR*R*)s-, -(CR*R*)r-N(R*)-(CR*R*) s-, при этом каждый из R1*, R2 , R3*, R3, R5* и R5 , не участвующих в образовании бирадикала или межнуклеозидного “мостика”, обозначает водород, галоген, гидрокси, меркапто, амино, азидо; или R2 и R3 - бирадикал -(CR*R*) r-O-(CR*R*)S-, при этом R2* выбирают из водорода, гидрокси и необязательно замещенной С 1-6алкокси группы, a R1*, R4*, R 5 и R5* - водород; где каждый из r и s равен 0 - 4, при условии, что сумма r+s равна 1 - 4, а каждый R* представляет собой водород или C1-6алкил; или его основной соли или кислотно-аддитивной соли
Наверх