Твердотопливный газогенератор

 

Твердотопливный газогенератор содержит корпус с зарядом, крышку и многосопловой блок, включающий конфузоры и тангенциально расположенные диффузоры сопловых отверстий. Многосопловой блок выполнен непосредственно в корпусе или в крышке газогенератора. В крышке газогенератора по осям конфузоров при повороте потока продуктов сгорания в диффузор выполнены заглубления. Объем заглублений выполнен из расчета объемной доли конденсированной фазы в продуктах сгорания, приходящейся на сопловое отверстие. Изобретение позволит улучшить баллистические характеристики газогенератора и уменьшить содержание конденсированной фазы в продуктах сгорания топлива, взаимодействующих с лопатками турбины. 3 ил.

Изобретение относится к области ракетной техники и может быть использовано при проектировании, отработке и изготовлении твердотопливных газогенераторов (ГТ), в частности для запуска воздушно-реактивных двигателей (ВРД), в том числе и прямоточных ВРД (ПВРД).

Аналогами патентуемого технического решения являются: пат. RU 2079689, RU 2071008, RU 2059963, RU 2178093, US 3066485, US 3491539. Среди них наиболее близкой по конструкции, к патентуемой, является конструкция твердотопливного ракетного двигателя для управляемого снаряда по патенту RU 2079689, принятая авторами за прототип. Однако, предусмотренные в прототипе конструктивные мероприятия позволяют обеспечить только “грубую” очистку продуктов сгорания топлива, т.к. скорости газовых потоков в предсопловом объеме весьма малы и, как правило, не превышают нескольких м/с. Поэтому, часть к-фазы осаживается на крышке (в пазухах) двигателя, а значительная часть разворачивается вместе с газовым потоком и покидает камеру сгорания через сопло. Кроме того, накопление к-фазы (шлаков) в предсопловом объеме носит неустойчивый, неравномерный характер. В процессе аэродинамического управления ракетой (перекладке рулей) происходит “встряхивание” ракеты, сопровождающееся повышенными вибрациями корпуса двигателя, и часть отложившейся к-фазы срывается с поверхности предсоплового объема и выбрасывается наружу, создавая дымовой хлопок. Использование такой конструкции в ГГ для запуска ВРД (ПВРД) недопустимо, т.к. в силу своих недостатков (попадания существенного количества к-фазы на лопасти турбинного колеса) значительно снижает его эксплуатационную надежность, а пролет крупных частиц к-фазы через критические сечения сопел диаметром 2...3 мм приводит к нестабильности внутрибаллистических характеристик ГГ.

Для ГГ запуска ВРД (ПВРД) предлагается схема с расположением пускового ГГ внутри турбинного колеса, лопатки которого закреплены на периферии обода. Для выпуска рабочего газа на лопатки турбины расходный блок ГГ выполняется многосопловым (фиг.1), а диффузоры (4) сопел выполняются тангенциально к цилиндрической крышке (2) корпуса (1) ГГ. Конфузоры (5) сопел выполняются соответственно в теле крышки вдоль оси корпуса ГГ, но под углом к диффузорам, т.е. в соплоблоке осуществляется разворот газового потока продуктов сгорания заряда (3). Однако и такая конструкция (фиг.1) имеет существенные недостатки. В процессе работы ГГ, в связи с поворотом газового потока, происходит накопление шлаков (6) в оконечности конфузоров (чему способствуют, как правило, малые диаметры критических сечений (dкр) сопел - 2...3 мм), что приводит к изменению суммарной площади критического сечения и нерасчетному процессу в камере ГГ. В течение рабочего процесса начинается размыв шлаков, их случайный ненормированный вынос, что сказывается на стабильности внутрибаллистических характеристик (ВБХ) газогенераторов и эксплуатационной надежности ВРД (ПВРД).

Технической задачей изобретения является улучшение баллистических характеристик ГГ, уменьшение содержания конденсированной фазы (к-фазы) в продуктах сгорания топлива, взаимодействующих с лопатками турбины.

Технический результат (фиг.1) заключается в выполнении твердотопливного газогенератора в виде корпуса (1) с зарядом (3), содержащего крышку (2) с многосопловым блоком, включающим конфузоры и тангенциально расположенные диффузоры, выполненные в теле крышки, либо непосредственно в корпусе газогенератора. При этом оси конфузоров (5) сопел (фиг.2) расположены предпочтительно вдоль оси корпуса газогенератора, а диффузоры сопел выполнены под углом к конфузорам и тангенциально к корпусу газогенератора. Для уменьшения содержания конденсированной фазы (шлаков) в продуктах сгорания топлива, истекающих из сопел, по оси конфузоров выполнены заглубления (7). В этом случае к-фаза, поступающая совместно с газовым потоком в конфузор, ускоряется и при повороте потока в диффузор почти полностью сепарируется в заглубления и оседает в них. Выполняя объем заглубленной части конфузора из расчета объемной доли к-фазы, приходящейся на одно сопловое отверстие (образующейся при сгорании твердотопливного заряда в целом), обеспечивают неизменную величину проходного сечения (dкр =const), стабильные внутрибаллистические характеристики (давление, секундный весовой расход) и повышенную чистоту истекающих продуктов сгорания при работе ГГ. В случае отсутствия заглублений, рабочему режиму ГГ (фиг.3) присущ, в отличие от патентуемой (8), нерасчетный вид кривой "давление-время" (9).

Отличительными признаками заявляемого технического решения являются:

1. Выполнение заглублений по оси конфузоров в теле крышки ГГ.

2. Выполнение объема заглублений для каждого конфузора не менее объемной доли к-фазы, приходящейся на одно сопловое отверстие.

Положительный эффект изобретения - улучшение (стабилизация) баллистических характеристик и уменьшение к-фазы (шлаков) в продуктах сгорания, поступающих на лопатки турбины, что способствует повышению эксплуатационной надежности работы ВРД и аналогичных систем.

Сущность изобретения поясняется следующими графическими материалами.

Фиг.1. Газогенератор с тангенциальным расположением сопел:

1 - корпус;

2 - крышка;

3 - заряд;

4 - конфузор;

5 - диффузор;

6 -шлаки.

Фиг.2. Сопловой блок предложенного ГГ:

4 - конфузор;

5 - диффузор;

6 - шлаки;

7 - заглубления.

Фиг.3. Диаграмма "давление-время":

8 - для патентуемой конструкции;

9 - для прототипа.

Конструкция предложенного ГГ включает (фиг.1) корпус (1) и крышку с многосопловым блоком (2). После воспламенения заряда продукты сгорания движутся (фиг.2) в конфузоры сопел; при повороте потока в диффузор твердые частицы сепарируются в заглубления конфузоров, а через диффузоры истекают газы очищенные от к-фазы. Вследствие наличия в конструкции соплового блока заглублений (фиг.2), отсутствующих в прототипе, в процессе работы обеспечивается стабильная расчетная зависимость (фиг.3) "давление-время" (кривая 8) в отличии от прототипа (кривая 9).

В части расширения компоновочных возможностей в ракетной системе многосопловой блок может быть размещен непосредственно в корпусе ГГ или ракетного двигателя твердого топлива (РДТТ).

Формула изобретения

Твердотопливный газогенератор, содержащий корпус с зарядом, крышку и многосопловой блок, включающий конфузоры и тангенциально расположенные диффузоры сопловых отверстий, отличающийся тем, что многосопловой блок выполнен либо непосредственно в корпусе, либо в крышке газогенератора, а в крышке газогенератора по осям конфузоров при повороте потока продуктов сгорания в диффузор выполнены заглубления, объем которых выполнен из расчета объемной доли конденсированной фазы в продуктах сгорания, приходящейся на сопловое отверстие.

РИСУНКИ



 

Похожие патенты:

Изобретение относится к области утилизации как сельскохозяйственных отходов, так и производственных отходов

Изобретение относится к конструкциям генераторов холодного азота на твердом химическом топливе, предназначенных для получения азота, температура которого не превышает 60oC, и используемых для наддува полостей и агрегатов летательных аппаратов, для пожаротушения, наддува подушек безопасности и т

Изобретение относится к устройствам для генерирования газа при сгорании твердого химического топлива

Изобретение относится к конструкциям газогенераторов на твердом химическом топливе, предназначенных для получения холодных газов, используемых при пожаротушении, для наддува бескамерных шин, наполнения эластичных оболочек, развертывания надувных средств спасения, приведения в действие различных механизмов

Изобретение относится к ракетной технике и может быть использовано при ликвидации крупногабаритного заряда твердого ракетного топлива (ТРТ), со сложной конфигурацией поверхности горения

Изобретение относится к области ракетной техники, а именно к созданию катапультных устройств для систем аварийного спасения летчика, оснащенных ракетными двигателями твердого топлива

Изобретение относится к области изготовления оболочек из органопластикового материала, которые могут быть использованы в качестве корпусов ракет, различных емкостей

Изобретение относится к технике, в которой используют источники газа, в частности пороховые аккумуляторы давления (ПАД), применяемые в различных пневмовытеснительных системах

Изобретение относится к ракетной технике и может быть использовано для определения скорости горения твердого ракетного топлива (ТРТ) в зависимости от давления

Изобретение относится к высокоточным артиллерийским управляемым боеприпасам и может быть использовано в конструкциях артиллерийских управляемых реактивных снарядов

Изобретение относится к новому высокомолекулярному химическому веществу - сложному смешанному азотнокислому эфиру целлюлозы с фталатными группами, которое используют в качестве полимерной основы клеев, лаков, красок, полимерных покрытий и твердых ракетных топлив общей формулы где X = 2,0 - 2,9; Y = 0 - (3 - x); (X1 + X) = 0,1 - 1,0; n = 350 - 1007, с повышенной скоростью горения и воспламеняемостью, с повышенной адгезионной прочностью и лучшей растворимостью в органических растворителях, нитраты целлюлозы с содержанием азота 11,8 - 13,5% или нитраты целлюлозы пироксилиновых порохов конденсируют с фталевым ангидридом в растворителе при 50 - 110oC, перемешивая в течение 1 - 6 ч при соотношении 0,5 - 2 моль ангидрида на каждую нитратную группу в элементарном звене нитроцеллюлозы, высаживают, фильтруют, промывают водой и сушат

Изобретение относится к области реактивного двигателестроения и позволяет повысить эффективность энергосиловых установок, которые могут использоваться на летательных аппаратах различного целевого назначения

Изобретение относится к ракетной технике и может быть использовано при автономной экспериментальной отработке старта ракет, например для запуска спутников

Изобретение относится к области уничтожения и утилизации ракетных двигателей твердого топлива путем сжигания зарядов твердого ракетного топлива
Наверх