Способ нанесения комбинированного покрытия

Изобретение относится к металлургии, в частности к химико-термической обработке жаропрочных сплавов, и может быть использовано при нанесении защитных покрытий на лопатки газотурбинных двигателей. На наружные и внутренние поверхности деталей наносят диффузионное алюминидное покрытие в циркулирующей газовой среде. Покрытие наносят по малоактивному механизму при отношении реакционных поверхностей Fн/Fo = 0,3 - 0,7, где Fн - суммарная поверхность деталей, на которые наносится покрытие, Fo - суммарная поверхность насыщающей смеси. Затем ионно-плазменным методом или электронно-лучевым испарением в вакууме на наружные поверхности деталей наносят плакирующее покрытие MeCrAlY, где Me - Ni, Co, NiCo. Способ нанесения комбинированного покрытия обеспечивает повышение жаростойкости и коррозионной стойкости покрытия, что увеличивает ресурс лопаток газотурбинного двигателя. 1 табл.

 

Изобретение относится к металлургии, в частности к химико-термической обработке жаропрочных сплавов, и может быть использовано при нанесении защитных покрытий на лопатки газотурбинных двигателей.

Известен способ нанесения покрытия, при котором электронно-лучевым методом наносят защитное покрытие NiCrAlY, а затем методом порошков проводят алитирование (П.Т.Коломыцев. Высокотемпературные защитные покрытия для никелевых сплавов. - М.: Машиностроение, 1991, с 146; Лахтин Ю.М., Арзамасов Б.Н. Химико-термическая обработка металлов. - М.: Металлургия, 1985, с 253-254).

Известен способ двухступенчатого хромалитирования, при котором вначале проводят хромирование, а затем алитирование (П.Т.Коломыцев. Высокотемпературные защитные покрытия для никелевых сплавов. - М.: Машиностроение, 1991, с.86)

Известен способ нанесения покрытия ниоборированием в порошковой смеси с последующим алитированием (Арзамасов Б.Н. Химико-термическая обработка металлов в активизированных газовых средах. - М.: Машиностроение, 1979, с.92).

Известен способ нанесения покрытия, при котором методом вакуумной плазменной технологии высоких энергий на установке МАП-1 наносят защитное покрытие NiCrAlY (Мубояджян С.А., Каблов Е.Н., Будиновский С.А. Вакуумно-плазменная технология получения защитных покрытий из сложнолегированных сплавов, МиТОМ. 1995, №2, с. 15-18).

Недостатком известных способов является интенсивный диффузионный обмен между напыляемым слоем NiCrAlY и сплавом детали, формируются обогащенные по хрому зоны, что, при определенных условиях, приводит к образованию топологически плотноупакованных фаз, снижающих прочностные характеристики деталей (пластичность, усталость). Отсутствуют защитные покрытия во внутренних полостях деталей.

Наиболее близким по технической сущности является способ нанесения на наружные и внутренние поверхности деталей диффузионного алюминидного покрытия в циркулирующей газовой среде (патент РФ №1238597, С 23 С 10/00, 1984).

Недостатком известного способа является низкая жаростойкость покрытия из-за малой толщины покрытия (50-60 мкм), что уменьшает ресурс лопаток при эксплуатации.

Задача изобретения - повышение жаростойкости покрытия за счет защиты поверхности деталей от высокотемпературного окисления.

Поставленная задача достигается тем, что в способе нанесения комбинированного покрытия, преимущественно на детали из жаропрочных сплавов с внутренними каналами, включающем нанесение на наружные и внутренние поверхности деталей диффузионного алюминидного покрытия в циркулирующей газовой среде, диффузионное алюминидное покрытие наносят по малоактивному механизму при отношении реакционных поверхностей Fн/Fo=0,3-0,7, где Fн - суммарная поверхность деталей, на которые наносится покрытие, Fo - суммарная поверхность насыщающей смеси, а затем ионно-плазменным методом или электронно-лучевым испарением в вакууме на наружные поверхности деталей наносят плакирующее покрытие MeCrAlY, где Me -Mi, Co, NiCo.

В предлагаемом техническом решении на детали наносят двухслойное комбинированное покрытие: первый слой - диффузионное алюминидное покрытие наносят газовым циркуляционным методом на внутренние и наружные поверхности деталей, а затем на наружную поверхность детали ионно-плазменным методом или электронно-лучевым испарением в вакууме наносят второй слой - покрытие MeCrFlY, где Me-Ni, Co, NiCo.

Нанесение первого слоя покрытия осуществляют при температуре 950-1050°С в герметическом объеме с принудительной циркуляцией газовой фазы между насыщающей смесью и деталью. Механизм формирования покрытия зависит от активности циркулирующей газовой смеси и определяется отношением количества алюминия, поставляемого насыщающей смесью, и количества алюминия, расходуемого на формирование покрытия на деталях. Время и рабочая температура процесса, в основном, определяют толщину получаемого покрытия, а механизм формирования покрытия регулируется парциальным давлением АlСl3. Установлено, что активность циркулирующей газовой смеси пропорциональна отношению условных реакционных поверхностей Fн/Fо, где Fн - суммарная поверхность деталей, на которые наносится покрытие, Fо - суммарная поверхность насыщающей смеси. Для получения равномерного защитного покрытия отношение условных реакционных поверхностей должно находится в пределах Fн/Fо=0,3-0,7.

Для получения плотного слоя покрытия во внутренней полости детали нижний предел отношения Fн/Fо должен быть не менее 0,3. При меньших отношениях в покрытии образуется прерывистый слой, который не обеспечивает надежной защиты детали.

Верхний предел не ограничивается, т.к. даже при активности циркулирующей газовой смеси, близкой к 1, происходит обеднение газовой смеси за счет насыщения поверхностей деталей и активность циркулирующей газовой смеси ≈0,8.

Формирование наружного покрытия по малоактивному механизму идет при соотношении Fн/Fо от 0,3 до 0,7. При активности больше 0.7 формирование покрытия идет по активному механизму с выделением вторичных фаз в наружной зоне покрытия и ведет к повышенному содержанию алюминия в покрытии, что способствует образованию измененных зон в сплаве основы.

При нанесении диффузионного алюминидного покрытия по малоактивному механизму формируется диффузионный барьер из β-фазы NiAl на наружной поверхности покрытия. Затем ионно-плазменным методом или электронно-лучевым испарением в вакууме на наружные поверхности деталей наносят плакирующее покрытие системы MeCrAlY, где Me -Ni, Co, NiCo.

Пример конкретного выполнения.

На лопатки с длинными узкими внутренними каналами из сплава ЖС26НК наносят диффузионное алюминидное покрытие газовым циркуляционным методом. Рабочая температура 1000°С, время нанесения 4 часа.

Процесс проводят в герметичном объеме, детали размещают в оснастке отдельно от насыщающей смеси, которая находится в поддоне и представляет собой источник алюминия - ферроалюминий FeAl и активатор - хлористый аммоний NH4Cl. В начале процесса в камере создают разряжение 1.33·10-1 Па и производят нагрев до рабочей температуры. В результате разложения галогенидов и последующих реакций диспропорционирования в камере создается давление 0,5·105 -1,5·105 Па. Получаемая среда обеспечивает протекание процесса алитирования наружных и внутренних поверхностей деталей за счет принудительной прокачки.

После нанесения алюминидного покрытия на наружную поверхность деталей ионно-плазменным методом (или электронно-лучевым испарением в вакууме) наносят покрытие системы MeCrFlY (Me -Ni, Co, NiCo). Общая толщина нанесенного комбинированного покрытия 100 мкм, в том числе покрытие NiCrFlY- 60 мкм.

Критерием оценки работоспособности покрытия выбрали глубину измененного слоя сплава детали под комбинированным покрытием. В таблице приведены данные, характеризующие свойства комбинированного покрытия в зависимости от отношения условных реакционных поверхностей Fн/Fо.

Установлено, что глубина коррозии комбинированного покрытия после работы в жестких условиях эксплуатации составила 1/3 толщины плакирующего слоя. На деталях без комбинированного покрытия выявлены отдельные язвенные поражения сплава детали.

Предлагаемый способ нанесения комбинированного покрытия обеспечивает повышение жаростойкости и коррозионной стойкости покрытия, что увеличивает ресурс лопаток газотурбинного двигателя.

Таблица
FН/FОТолщина алитированного слоя, мкмГлубина измененного слоя в сплаве детали, мкм
наружная поверхностьВнутренняя поверхность
0,2525Прерывистая40-60
0,33010-20Отсутствует
0,53515-30Отсутствует
0,74030-40Отсутствует
0,754530-5010-20

Способ нанесения комбинированного покрытия преимущественно на детали из жаропрочных сплавов с внутренними каналами, включающий нанесение на наружные и внутренние поверхности деталей диффузионного алюминидного покрытия в циркулирующей газовой среде, отличающийся тем, что диффузионное алюминидное покрытие наносят по малоактивному механизму при отношении реакционных поверхностей Fн/Fo = 0,3 -0,7, где Fн - суммарная поверхность деталей, на которые наносится покрытие, Fo - суммарная поверхность насыщающей смеси, а затем ионно-плазменным методом или электронно-лучевым испарением в вакууме на наружные поверхности деталей наносят плакирующее покрытие MeCrAlY, где Me - Ni, Co, NiCo.



 

Похожие патенты:

Изобретение относится к способам изготовления деталей с упрочненной рабочей поверхностью, в частности к способу получения многослойного покрытия на стальной или чугунной поверхности.

Изобретение относится к технологии поверхностного упрочнения металлообрабатывающего инструмента и может быть применено в машиностроении. .

Изобретение относится к фольговым декоративным материалам на основе золота, серебра, меди и их сплавов, применяемых для кровли куполов церквей, крестов, отделки наружного и внутреннего интерьеров зданий.

Изобретение относится к химико-термической обработке жаропрочных сплавов и может быть использовано в машиностроении. .

Изобретение относится к прокатному производству, в частности к подготовке рабочей поверхности валков прокатных станов перед прокаткой, и может найти применение в различных отраслях машиностроения.

Изобретение относится к производству композиционных материалов с антикоррозионными, износостойкими и антиобледенительными покрытиями. .
Изобретение относится к формированию износостойких покрытий на алюминиевых деталях сложной формы и большой площади и может быть использовано в машиностроении. .
Изобретение относится к металлургии и может быть использовано при получении электросварных труб с антикоррозионным покрытием. .

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбостроении для защиты деталей, работающих при высоких температурах, в том числе крупногабаритных деталей горячего тракта турбины.

Изобретение относится к области металлургии, в частности к способам диффузионного насыщения поверхностных слоев материалов, и может быть использовано в авиационной, судостроительной и энергомашиностроительной промышленности.

Изобретение относится к способам покрытия металлов, в частности к покрытию алюминием с использованием твердых исходных материалов. .

Изобретение относится к электротехнике и производству электропроводников из интерметаллических соединений, в частности спиралей, используемых в качестве нагревателей.

Изобретение относится к металлургии, а именно к химико-термической обработке, и может быть использовано в машиностроительной , химической и других отраслях промышленности.

Изобретение относится к металлургии, в частности к химико-термической обработке металлов и сплавов, а именно к диффузионному насыщению металлической поверхности в твердом состоянии алкминием.

Изобретение относится к области металлургии, а именно к химико-термической обработке металлов, и может быть использовано при алитировании медных деталей в различных областях машиностроения.

Изобретение относится к области металлургии, в частности к химико-термической обработке металлических деталей, и может быть использоэано для придания им жаростойкости.
Изобретение относится к черной металлургии и может быть использовано при производстве технологического инструмента для прокатки труб
Наверх