Пульсирующий детонационный двигатель

Пульсирующий детонационный двигатель содержит выполненные в виде отдельных модулей камеру сгорания, реактор и детонационный резонатор, соединенные между собой с возможностью замены. Внутри камеры сгорания и реактора, вдоль продольной оси двигателя, размещен воздушный канал второго контура. Изобретение позволяет использовать детонационный двигатель в качестве модели для проведения различного вида исследований, путем обеспечения возможности варьирования различными схемами составных узлов двигателя. 1 ил.

 

Изобретение относится к области двигателестроения и может быть использовано для создания тяги на летательных аппаратах.

Известен пульсирующий детонационный двигатель, содержащий камеру сгорания, реактор, детонационный резонатор и воздушный канал второго контура [1].

В известном устройстве газогенератор, состоящий из камеры сгорания и реактора, и детонационный резонатор расположены в едином корпусе с образованием кольцевого канала, являющегося каналом второго контура. Такая конструкция двигателя не позволяет использовать его в качестве модели для проведения параметрических исследований с варьированием термодинамических параметров, конфигурации и размеров элементов ее проточной части при испытаниях.

Задачей, на решение которой направлено заявленное изобретение, является создание конструкции детонационного двигателя, позволяющей использовать его в качестве модели для проведения различного вида исследований, путем обеспечения возможности варьирования различными схемами составных узлов двигателя.

Технический результат достигается тем, что в пульсирующем детонационном двигателе, содержащем камеру сгорания, реактор, детонационный резонатор и воздушный канал второго контура, камера сгорания, реактор и детонационный резонатор выполнены в виде отдельных модулей, последовательно соединенных между собой с возможностью замены, а воздушный канал второго контура размещен внутри камеры сгорания и реактора вдоль продольной оси двигателя.

Признаки, отличающие заявленное изобретение от известного [1] и характеризующие выполнение камеры сгорания, реактора и детонационного резонатора в виде отдельных модулей, последовательно соединенных между собой с возможностью замены, позволяют при проведении испытаний без полного разбора двигателя быстро производить замену одного или нескольких его составных узлов, а размещение канала второго контура внутри камеры сгорания и реактора вдоль продольной оси двигателя обеспечивает достоверность результатов, получаемых в ходе исследований, позволяя использовать этот двигатель в качестве модели для проведения различного вида исследований, в том числе и с варьированием термодинамических параметров.

Изобретение поясняется чертежом, где представлен общий вид заявленного устройства.

Пульсирующий детонационный двигатель содержит выполненные в виде отдельных модулей камеру сгорания 1, реактор 2 и детонационный резонатор 3. Коаксиально цилиндрическому корпусу камеры сгорания 1 размещен цилиндрический канал 4, образующий вместе с корпусом камеры сгорания 1 кольцевой канал 5, в котором размещены горелочные устройства 6. Корпус камеры сгорания 1 соединен с корпусом реактора 2 через конфузор 7 фланцевыми соединениями. Реактор 2 представляет собой кольцевой канал 8, образованный корпусом реактора 2 и воздушным цилиндрическим каналом 4. Корпус реактора 2 соединен с корпусом резонатора 3 также фланцевым соединением.

Первый (“горячий”) контур двигателя представляет собой кольцевой канал, образованный соответствующими каналами камеры сгорания 1 и реактора 2, и предназначен для подачи пирогаза в детонационный резонатор 3. Второй (“холодный”) контур представляет цилиндрический канал 4 и предназначен для подачи воздуха в детонационный резонатор 3.

Перпендикулярно продольной оси двигателя расположены патрубки 9, 10 подвода воздуха к камере сгорания 1 и в канал 4 второго контура, что позволяет исключить влияние входного импульса на тягу устройства в целом.

Детонационный резонатор 3 состоит из кольцевого канала, в котором последовательно расположены смеситель 11, кольцевое сопло 12 и собственно резонаторная полость 13 с “тяговой стенкой” 14.

Работа устройства осуществляется следующим образом.

Сжатый воздух (с давлением, преимущественно превышающим 2 кг/см2) через штуцер 9 подается в камеру сгорания 1. Туда же через топливный коллектор 15 подается горючее, которое полностью сжигается, обеспечивая тем самым высокую температуру потока - источника предварительного нагрева.

Высокотемпературный поток продуктов сгорания из камеры сгорания 1 поступает в реактор 2, куда дополнительно подается горючее через топливный коллектор 16, причем последний может быть установлен в нескольких позициях по длине реактора 2. За счет высокой температуры потока - источника предварительного подогрева происходит пиролиз дополнительно подаваемого горючего, сопровождающийся распадом исходных молекул с образованием более высокореакционноспособных частиц.

На вход детонационного резонатора 3 подаются продукты пиролиза, а также воздух из канала 4 второго (“холодного”) контура. В резонаторе 3 реализуются периодические детонационнные процессы, способствующие преобразованию внутренней энергии рабочего тела в механическую работу силы тяги при постоянном объеме V=const. Выхлоп продуктов детонации происходит непосредственно в атмосферу из резонаторной полости 13. Действие резонатора 3 основано на известном эффекте Гартмана-Шпренгера и заключается в возникновении высокочастотных с большой амплитудой пульсационных режимов по давлению, сопровождающихся ростом температуры торможения внутри резонаторной полости 13.

Благодаря фланцевому соединению между собой камеры сгорания 1, реактора 2 и резонатора 3, каждый из этих элементов двигателя можно поменять на соответствующий элемент с измененной конструкцией. Это позволяет, например, проводить испытания различных конструкций горелочных устройств для различного вида топлива; оптимизировать процессы сжигания топлив от легких до тяжелых углеводородов, например дизельного топлива; изучать продукты пиролиза углеводородных топлив и оптимальные режимы их получения с целью использования их в детонационных устройствах; проводить испытания различных конструкций детонационных устройств с целью получения тяги с высокими удельными импульсами. Появляется возможность оптимизировать схемы смешения продуктов пиролиза и окислителя воздуха перед детонационным резонатором.

Изобретение позволяет использовать детонационный двигатель в качестве модели для проведения параметрических исследований с варьированием термодинамических параметров, конфигурации и размеров элементов ее проточной части при испытаниях.

Источник информации

1. Патент Российской Федерации №2034996, МПК 5 F 02 К 3/08, 1993 г.

Пульсирующий детонационный двигатель, содержащий камеру сгорания, реактор, детонационный резонатор и воздушный канал второго контура, отличающийся тем, что камера сгорания, реактор и детонационный резонатор выполнены в виде отдельных модулей, последовательно соединенных между собой с возможностью замены, а воздушный канал второго контура размещен внутри камеры сгорания и реактора вдоль продольной оси двигателя.



 

Похожие патенты:

Изобретение относится к ракетной технике, в частности к ракетным двигательным установкам. .

Изобретение относится к области реактивных двигателей, а более конкретно к реактивным двигателям, обеспечивающим в одном агрегате создание подъемной силы для вертикального подъема и тяги для горизонтального движения.

Изобретение относится к пульсирующим воздушно-реактивным двигателям с резонансными камерами сгорания. .

Изобретение относится к авиационной технике и может быть использовано в качестве механического колебательного контура для программного управления режимом работы спаренного пульсирующего воздушно-реактивного двигателя (ПуВРД), исполнительным элементом которого является газодинамический маятник (ГДМ).

Изобретение относится к реактивным двигательным установкам, а также к устройствам управления положением летательного аппарата в воздухе. .

Изобретение относится к пульсирующим воздушно-реактивным двигателям с резонансной камерой сгорания. .

Изобретение относится к авиационной технике, в частности к летательным аппаратам с пульсирующими воздушно-реактивными двигателями. .

Изобретение относится к машиностроению и позволяет повысить эффективность . .

Изобретение относится к технике, а конкретно к двигателям летательных аппаратов

Изобретение относится к области реактивного двигателестроения и электроэнергетики и позволяет повысить эффективность энергосиловых установок, используемых на летательных аппаратах и мобильных комплексах

Изобретение относится к пульсирующим детонационным двигателям, в которых используется магнитогидродинамическое управление потоком

Изобретение относится к области авиастроения и может быть использовано при проектировании летательных аппаратов различного назначения, в двигателестроении самолетов

Изобретение относится к машиностроению, преимущественно к двигателестроению, и может быть использовано для создания тяги на летательных аппаратах, других транспортных средствах, а также в энергетических установках

Изобретение относится к авиационной технике и может быть использовано в аппаратах вертикального взлета, использующих пульсирующие воздушно-реактивные двигатели (далее ПуВРД)

Изобретение относится к авиации и может быть использовано в двигателестроении летательных аппаратов
Наверх