Способ получения титаната алюминия и изделие, изготовленное из него

Изобретение относится к способам получения высокотемпературных керамических материалов на основе титаната алюминия золь-гель методом и может быть использовано в автомобилестроении, машиностроении, при изготовлении композиционных материалов для космической и авиационной техники. Способ получения титаната алюминия золь-гель методом включает перемешивание алкоксида алюминия и изобутоксида титана, взятых в стехиометрических соотношениях, в водно-спиртовом растворителе до получения геля, сушку и двухступенчатую термообработку. В качестве алкоксида алюминия используют раствор диэтоксиэтилалюминия в толуоле, в качестве растворителя - водный раствор бутилового спирта. Перемешивание проводят в среде аргона при воздействии ультразвука частотой 30-70 Гц и температуры 25-75°С. Двухступенчатую термообработку проводят по режиму: 1-я ступень - при температуре 600-700°С в течение 2-2,5 часов, 2-я ступень - при температуре 1280-1300°С в течение 2-2,5 часов. Применение титаната алюминия в качестве матрицы композиционных материалов для изготовления изделий и покрытий повышает температуру эксплуатации, снижает вес конструкций, выполненных с использованием этих материалов. 3 с. и 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к способам получения высокотемпературных керамических материалов на основе титаната алюминия золь-гель методом и может быть использовано в автомобилестроении, машиностроении, при изготовлении композиционных материалов для космической и авиационной техники.

Известен способ получения титаната алюминия методом твердофазового спекания смесей оксидов титана и алюминия, включающий помол смесей и их последующую термообработку при высоких температурах 1600-1800°С (Патент США 6197248).

Способ не позволяет получить однофазную керамику, так как в материале остается значительное количество непрореагировавших Аl2О3 и ТiO2.

Известен способ получения титаната алюминия, включающий совместный помол оксида и нитрида титана и нитрида алюминия и последующий обжиг в кислородсодержащей атмосфере, при этом получают однофазный титанат алюминия (Патент РФ 2046782).

Недостатком способа являются повышенная температура получения титаната алюминия и повышенные значения температурного коэффициента линейного расширения (ТКЛР) керамических материалов, получаемых на его основе.

Известны способы получения порошков титаната алюминия, включающие обжиг совместно осажденных гидрооксидов алюминия и титана, получаемых из растворимых солей алюминия и титана - гомогенное химическое осаждение или из растворимых солей алюминия и технического или плазмохимического диоксида титана - гетерогенное химическое осаждение (Тарасовский В.П. Лукин Е.С. // Огнеупоры. - 1985. - №6. - С.24-31; Бобкова Н.М., Поповская Н.Ф. // Стекло и керамика, 2000, №12, с.16-20).

Способы не обеспечивают высокого выхода титаната алюминия и пониженных значений ТКЛР керамических материалов из титаната алюминия.

Наиболее близким по технической сущности к предлагаемому способу является способ получения титаната алюминия золь-гель методом с использованием в качестве алкоксидов изобутоксида титана и трибутоксида алюминия, растворяемых в водном растворе этилового спирта, включающий их перемешивание, сушку при 100°С и термообработку по двухступенчатому режиму: температура 1-ой ступени - 450°С, температура 2-ой ступени - 1300°С с выдержкой 10 часов (Патент США 5407479).

Изделиями на основе титаната алюминия, получаемыми по способу-прототипу, являются огнеупорные керамические материалы, используемые преимущественно в газотурбинных двигателях. Кроме того, данный способ позволяет получить защитное покрытие на керамических материалах на основе SiC и Si3N4.

Однако по способу-прототипу не удается получить монофазный, тонкодисперсный, однородный по дисперсности титанат алюминия, позволяющий получить керамические изделия и покрытия на его основе с пониженным значением ТКЛР.

Технической задачей изобретения является получение монофазного, тонкодисперсного, однородного по дисперсности порошка титаната алюминия, позволяющего изготовить керамические изделия и покрытия на его основе с пониженным значением ТКЛР.

Поставленная техническая задача достигается тем, что предложен способ получения титаната алюминия золь-гель методом, включающий перемешивание алкоксида алюминия и изобутоксида титана, взятых в стехиометрических соотношениях, в водно-спиртовом растворителе до получения геля, сушку и двухступенчатую термообработку, в котором в качестве алкоксида алюминия используют раствор диэтоксиэтилалюминия в толуоле, в качестве растворителя - водный раствор бутилового спирта, перемешивание проводят в среде аргона при воздействии ультразвука и температуры. Двухступенчатую термообработку проводят по режиму:

1-я ступень - при температуре 600-700°С в течение 2-2,5 часов,

2-я ступень - при температуре 1280-1300°С в течение 2-2,5 часов.

Перемешивание проводят при воздействии ультразвука частотой 30-70 Гц и температуры 25-75°С.

Предложены также изделие, изготовленное из титаната алюминия, в котором титанат алюминия получен предлагаемым способом, и покрытие на основе титаната алюминия, нанесенное на подложку, в котором титанат алюминия получен предлагаемым способом.

Изделиями на основе титаната алюминия, получаемому по предлагаемому способу, являются, например, высокоогнеупорные тигли, различные детали наиболее теплонагруженных элементов авиационной и космической техники (головки поршня, части турбокомпрессора, клапаны изоляции и т.д.). Спеченный титанат алюминия используют в качестве матрицы для композиционных материалов, а также наполнителя в стеклокерамических материалах.

Покрытие на основе титаната алюминия наносят на керамическую подложку. Покрытие обладает повышенной трещиностойкостью при воздействии рабочих температур и высокой стойкостью к коррозии.

Таким образом, технический результат достигается в изобретении за счет выбора алкоксида алюминия, растворителя, условий перемешивания: в среде аргона при воздействии ультразвука и температуры и выбора режима термообработки геля, реализация которых позволяет получать монофазный, тонкодисперсный порошок титаната алюминия однородной дисперсности, изделия и покрытия на его основе с пониженным значением ТКЛР.

Технологические параметры способа получения титаната алюминия и его свойства представлены в таблице.

Примеры конкретного осуществления

Пример 1.

25% раствор диэтоксиэтилалюминия (C2H5)2AlOC2H5 в толуоле смешивали в ультразвуковой ванне с изобутоксидом титана Тi[СН3(СН2)3О]4, взятых в количествах, соответствующих стехиометрическому составу Al2TiO5, в смесь добавляли водный раствор бутилового спирта, осуществляя перемешивание при воздействии ультразвука частотой 30 Гц и температуры - 25°С, перемешивание проводили в среде аргона до образования геля, далее гель подвергали сушке при 100°С и термообработке по двухступенчатому режиму: температура 1-ой ступени - 600°С, время выдержки - 2,5 часа для удаления органических составляющих; температура 2-ой ступени - 1300°С и время выдержки 2,5 часа. По данным рентгенофазового анализа процент выхода титаната алюминия составил 96%. По данным лазерного микроанализа размер частиц полученного порошка титаната алюминия составил 0,5-1,8 мкм, причем 80%-88% - частицы размером 1-1,5 мкм, что свидетельствует о высокой однородности по дисперсности, температурный коэффициент линейного расширения (ТКЛР) спеченного образца титаната алюминия, измеренный на вертикальном дилатометре, в интервале температур 25-500°С равен 5,0·10-7 К-1. Свойства полученного титаната алюминия приведены в таблице.

Примеры 2, 3 выполнены аналогично примеру 1, при этом технологические параметры примеров 2, 3 приведены в таблице.

Пример 4 выполнен по технологическим параметрам способа-прототипа в лабораторных условиях, идентичных предлагаемому способу.

Сравнительный анализ данных, приведенных в таблице, показал, что в предлагаемом способе выход титаната алюминия повысился в 1,3 раза, размер частиц уменьшился в 1,2-10 раз и керамические материалы, и покрытия, получаемые на основе титаната алюминия, имеют пониженный более чем в 6 раз ТКЛР.

Применение титаната алюминия в качестве матрицы композиционных материалов повышает температуру эксплуатации, снижает вес конструкций, выполненных с использованием этих материалов.

1. Способ получения титаната алюминия золь-гель методом, включающий перемешивание алкоксида алюминия и изобутоксида титана, взятых в стехиометрических соотношениях, в водно-спиртовом растворителе до получения геля, сушку и двухступенчатую термообработку, отличающийся тем, что в качестве алкоксида алюминия используют раствор диэтоксиэтилалюминия в толуоле, в качестве растворителя - водный раствор бутилового спирта, а перемешивание проводят в среде аргона при воздействии ультразвука и температуры.

2. Способ по п.1, отличающийся тем, что двухступенчатую термообработку проводят по режиму:

1-я ступень - при температуре 600-700°С в течение 2-2,5 ч,

2-я ступень при температуре 1280-1300°С в течение 2-2,5 ч.

3. Способ по п.1, отличающийся тем, что перемешивание проводят при воздействии ультразвука частотой 30-70 Гц и температуры 25-75°С.

4. Изделие, изготовленное из титаната алюминия, отличающееся тем, что титанат алюминия получен способом по любому из пп.1-3.

5. Покрытие на основе титаната алюминия, нанесенное на подложку, отличающееся тем, что титанат алюминия получен способом по любому из пп.1-3.



 

Похожие патенты:

Изобретение относится к области xи ичecкoй технологии, а именно к получению связующих, и может быть использовано при получении изделий на основе огнеупорных наполнителей, в том числе легковесных.

Изобретение относится к области цветной металлургии и может быть использовано в производстве синтетических материалов для керамических диэлектриков. .

Изобретение относится к материалам пьезотехники и может быть использовано в качестве пьезопреобразователя для датчиков, работающих в широком диапазоне температур и давлений.

Изобретение относится к керамическим диэлектрическим материалам и может быть использовано в радиотехнике, преимущественно в качестве высокочастотного термостабильного конденсаторного материала.

Изобретение относится к пьезокерамическим материалам с высокой температурой Кюри. .

Изобретение относится к области пьезотехники и может быть использовано для создания электромеханических преобразователей. .

Изобретение относится к области производства сегнетопьезокерамических материалов, предназначенных для создания высокочастотных приемо-передающих устройств медицинской ультразвуковой техники
Изобретение относится к материалам с низким значением температурного коэффициента линейного расширения, предназначенным для эксплуатации в условиях значительных термических нагружений, например, в виде огнеупорных изделий, деталей двигателей внутреннего сгорания, носителей катализаторов в устройствах дожигания выхлопных газов автомобилей, фильтров дизельных моторов и др., или в качестве прецизионных изделий, характеризующихся объемопостоянством в широком интервале температур

Изобретение относится к тонкодисперсным титанатам свинца-циркония (PZT), гидратам титаната циркония (ZTH) и титанатам циркония как предшественникам титанатов свинца-циркония, к способу их получения путем реакции частиц диоксида титана с соединением циркония или соединением свинца и циркония

Изобретение относится к химической промышленности, а именно к способам получения керамических изделий, и может найти применение в производстве высокопрочной керамики, используемой в качестве конструкционного, огнеупорного, фрикционного или электроизоляционного материала

Изобретение относится к области производства теплоизоляционных материалов и может быть использовано для повышения энергоэффективности термического оборудования, для выполнения теплоизолирующего слоя промышленных установок, работающих при высоких температурах, а также для обеспечения пожаробезопасности установок, зданий и сооружений
Изобретение относится к способам получения порошков фаз слоистых титанатов ряда s- и p-элементов (ВСПС), которые являются основой пьезоматериалов, широко применяющихся в современной аэрокосмической промышленности

Изобретение относится к технологии производства антифрикционных добавок и смазочных композиций для использования в узлах трения качения и скольжения в автомобильной, машиностроительной, текстильной, химической и других отраслях промышленности. Порошок титаната калия состоит из слоистых частиц чешуйчатой формы субмикронного размера, интеркалированных ионами, по крайней мере, одного переходного металла. Частицы титаната калия могут быть одновременно интеркалированы ионами, по крайней мере, одного переходного металла и одним видом поверхностно-активного вещества. Смазочная композиция содержит антифрикционную добавку и смазочный материал, в качестве которого может выступать базовая пластичная смазка либо базовое минеральное, полусинтетическое или синтетическое масло. При этом в качестве антифрикционной добавки используют порошок титаната калия, состоящий из слоистых частиц чешуйчатой формы субмикронного размера, интеркалированых ионами, по крайней мере, одного переходного металла, при следующем соотношении компонентов, мас.%: порошок титаната калия 0,3-12,0, базовый смазочный материал 88,0-99,7. Изобретение позволяет улучшить трибологические свойства порошка титаната калия, снизить коэффициент трения и увеличить подвижность слоев, формирующих его частицы, а также снизить степень агломерированности этих частиц. 2 н. и 10 з.п. ф-лы, 3 ил., 2 табл., 1 пр.

Изобретение относится к материалам электронной техники и может быть использовано в производстве термостабильных керамических резонаторов, подложек, фильтров и изделий СВЧ-техники. Предлагаемый керамический материал дополнительно содержит оксид празеодима при следующем соотношении компонентов, вес %: ВаО - 13.2-16.7, PbO - 2.6-6.7, Bi2O3 - 8.3-19.0, Pr2O3 - 24.7-33.4, TiO2 - остальное. Технический результат изобретения - получение термостабильного керамического материала, температурный коэффициент частоты которого изменяется не более чем от минус 10×10-6 до +10×10-6 1/град с малыми диэлектрическими потерями tgδε≤5×10-4 при сохранении величины диэлектрической проницаемости ε'=100-130. Предлагаемый материал позволяет создавать малогабаритные объемные керамические резонаторы и фильтры, тем самым расширяя номенклатуру современных селективных устройств, и способствует дальнейшей миниатюризации устройств мобильной связи. 1 табл.

Изобретение относится к разработке новых магнитных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти. Спин-стекольный магнитный материал TbFeTi2O7 включает железо, титан, кислород и тербий при следующем соотношении компонентов, мас.%: Tb - 37,61; Fe - 13,22; Ti - 22,66; О - 26,51. Способ получения тербийсодержащего спин-стекольного материала включает приготовление шихты из оксидов Fe2O3, Tb2О3 и TiO2, формование таблеток и их спекание в четыре этапа, максимальная температура отжига составляет 1250°C. Техническим результатом изобретения является получение нового магнитного материала с состоянием спинового стекла, с отсутствием сильно поглощающих нейтроны элементов. 2 табл., 2 ил.
Изобретение относится к получению материала для электронной промышленности, в частности, для литий-ионных аккумуляторов. Способ получения нанопорошков композита на основе титаната лития Li4Ti5O12/C включает смешивание диоксида титана, карбоната лития и крахмала и термическую обработку полученной смеси до получения материала с 100% структурой шпинели. Карбонат лития берут в 10÷15 мас.% избытке от стехиометрически необходимого для получения соединения Li4Ti5O12. Крахмал вводят в смесь в количестве 10÷20 мас.% от массы смеси. Термическую обработку смеси проводят при температуре 850°C в течение 10-15 часов. Изобретение позволяет снизить длительность процесса синтеза нанопорошка композита Li4Ti5O12/C с получением материала с размером зерна 60-70 нм и высокими значениями разрядной емкости 160-170 мАч/г. 1 табл., 1 пр.
Наверх