Жидкостной акселерометр

Изобретение относится к измерительной технике и может быть использовано для измерения ускорений объектов. Существо изобретения заключается в том, что в жидкостном акселерометре, содержащем канал с рабочей жидкостью, на концах которого расположены два датчика частотного преобразователя гидростатических давлений, частотный преобразователь выполнен в виде волоконного интерферометра, в состав которого входят оптически согласованные источник когерентного света, две волоконные катушки и фотоприемник, подключенный через усилитель к частотомеру. Для определения знака ускорения в состав акселерометра также входит специальная электронная схема. Техническим результатом является получение на выходе оптического выходного сигнала. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения ускорений.

Известен жидкостной акселерометр аналогичного назначения [1], содержащий установленный в корпусе цилиндр с электролитом, в котором размещен проводящий поплавок, привод вращения цилиндра и электролитический преобразователь линейного перемещения поплавка.

Наиболее близким к предлагаемому является жидкостной акселерометр [2], содержащий заполненный рабочей жидкостью канал и частотный преобразователь гидростатических давлений, два датчика которого расположены на концах этого канала, причем выход частотного преобразователя подключен через усилитель к частотомеру.

Данный жидкостной акселерометр [2] принят за прототип.

В прототипе частотный преобразователь гидростатических давлений включает в себя два независимых друг от друга частотных датчика, выходы которых подключены к вычислителю, в состав которого входят последовательно соединенные усилитель и частотомер.

Недостатком известных жидкостных акселерометров [1, 2] является отсутствие на их выходе оптического выходного сигнала.

Техническим результатом, получаемым от внедрения изобретения, является получение на выходе акселерометра оптического выходного сигнала, что позволяет осуществить применение в качестве телекоммуникационной системы для дальнейшей передачи сигнала оптических линий связи.

Поставленный технический результат получают за счет того, что известный жидкостной акселерометр, содержащий заполненный рабочей жидкостью канал и частотный преобразователь гидростатических давлений, два датчика которого расположены на концах этого канала, причем выход частотного преобразователя подключен через усилитель к частотомеру, дополнительно содержит источник пилообразного напряжения, программный задатчик командных сигналов и электронный ключ, а частотный преобразователь гидростатических давлений выполнен в виде источника когерентного света, двух идентичных волоконных катушек и фотоприемника, оптически связанных в волоконно-оптический интерферометр, выходом которого является выход фотоприемника, при этом одна из волоконных катушек намотана с натягом на боковую поверхность пьезоцилиндра, электроды которого подключены к источнику пилообразного напряжения, управляемый вход которого соединен с выходом программного задатчика командных сигналов, а усилитель подключен к частотомеру через электронный ключ, управляемый вход которого соединен с выходом программного задатчика командных сигналов.

В частном случае вторая волоконная катушка интерферометра также может быть намотана на боковую поверхность дополнительного аналогичного пьезоцилиндра.

Жидкостной акселерометр может также дополнительно содержать поршень, выполненный из материала, плотность которого превышает плотность рабочей жидкости, размещенный в середине канала.

Изобретение поясняется чертежом. На фиг.1 представлена конструктивная схема акселерометра; на фиг.2 - оптико-электронная схема прибора; на фиг.3 - частотно-временные диаграммы для пояснения работы акселерометра.

Жидкостной акселерометр содержит заполненный рабочей жидкостью канал 1 (фиг.1) и частотный преобразователь гидростатических давлений, выполненный в виде источника когерентного света 2 (фиг.2), двух идентичных волоконных катушек 3, 4 и фотоприемника 5, оптически согласованных в волоконно-оптический интерферометр, выходом которого является выход фотоприемника 5.

Волоконная катушка 3 намотана с натягом на боковую поверхность пьезоцилиндра 6, электроды которого подключены к источнику 7 пилообразного напряжения.

Волоконная катушка 4 может быть намотана на аналогичный пьезоцилиндр 8, электроды которого не подключены к источнику напряжения. То есть пьезоцилиндр 8 по существу используется как подложка для волоконной катушки 4. Обе катушки 3, 4 расположены на концах канала 1 с рабочей жидкостью.

Выход фотоприемника 5 через усилитель 9 фототока и электронный ключ 10 подключен к частотомеру 11.

Электронный ключ 10 и источник 7 пилообразного напряжения подключены своими управляемыми входами к программному задатчику 12 командных сигналов.

Акселерометр также может содержать поршень 13, выполненный из материала, плотность которого превышает плотность рабочей жидкости. Поршень 13 располагается в середине канала 1 с рабочей жидкостью.

На фиг.1 источник 7 пилообразного напряжения показан подключенным к двум электродам пьезоцилиндра 6, а на фиг.2 - к одному, причем для ясности оптической схемы пьезоцилиндр на фиг.2 вынесен за пределы волоконной катушки 3.

Жидкостной акселерометр работает следующим образом.

При наличии в составе акселерометра поршня 13 последний играет роль инерционной массы. При отсутствии поршня 13 роль инерционной массы выполняет сама рабочая жидкость в канале 1.

Воздействие ускорения W на поршень 13 (или рабочую жидкость) приводит к их смещению вправо или влево в зависимости от направления воздействия. При этом гидростатическое давление около одной из катушек, например 3, увеличивается, а около другой (4) - уменьшается.

Это приводит к появлению на выходе интерферометра дополнительной разности фаз и измерению доплеровской частоты на выходе фотоприемника 5. После усиления в усилителе 9 частота интерференционных пиков регистрируется частотомером 11, который выдает сигнал, пропорциональный амплитуде воздействующего на инерционную массу ускорения.

Для определения знака (направления) воздействующего ускорения в акселерометры предусмотрены блоки 7, 10, 12, а также пьезоцилиндр 6.

На пьезоцилиндр 6 от источника 7 пилообразного напряжения подается сигнал, период которого (t1+t2) (фиг.3) задается задатчиком 12 командных сигналов (фиг.3а).

Пилообразное напряжение (фиг.3б) задает на выходе интерферометра постоянный сдвиг частоты f0 (фиг.3в), относительно которого определяется дополнительный сдвиг частоты f1 или f2, вызванный измеряемым ускорением W.

Это позволяет определить направление ускорения по знаку измеряемых частот f1, f2 относительно частоты f0. (Если частота увеличилась, то ускорение направлено вправо, если уменьшилась - влево.)

В связи с тем что идеальное пилообразное напряжение получить трудно, задатчик 12 командных сигналов на время t2 переходного процесса закрывает электронный ключ 10, и частотомер 11 накапливает измерительную информацию только в периоды времени t1.

Таким образом, с помощью данного жидкостного акселерометра на выходе прибора получают оптический сигнал, который можно направлять по волоконной линии связи длиной несколько километров (на чертеже не показана) к месту приема фотоприемником 5 (фиг.2).

Этим достигается поставленный технический результат.

Источники информации

1. Авторское свидетельство СССР №1211651, кл. G 01 P 15/08, 1986.

2. Авторское свидетельство СССР №732750, кл. G 01 P 15/08, 1980 - прототип.

1. Жидкостной акселерометр, содержащий заполненный рабочей жидкостью канал и частотный преобразователь гидростатических давлений, два датчика которого расположены на концах этого канала, причем выход частотного преобразователя подключен через усилитель к частотомеру, отличающийся тем, что дополнительно содержит источник пилообразного напряжения, программируемый задатчик командных сигналов и электронный ключ, а частотный преобразователь гидростатических давлений выполнен в виде источника когерентного света, двух идентичных волоконных катушек и фотоприемника, оптически согласованных в волоконно-оптический интерферометр, выходом которого является выход фотоприемника, при этом одна из волоконных катушек намотана с натягом на боковую поверхность пьезоцилиндра, электроды которого подключены к источнику пилообразного напряжения, управляемый вход которого соединен с выходом программного задатчика командных сигналов, а усилитель подключен к частотомеру через электронный ключ, управляемый вход которого соединен с выходом программного задатчика командных сигналов.

2. Жидкостной акселерометр по п.1, отличающийся тем, что вторая волоконная катушка интерферометра также намотана на боковую поверхность дополнительного аналогичного пьезоцилиндра.

3. Жидкостной акселерометр по п.1, отличающийся тем, что дополнительно содержит поршень, выполненный из материала, плотность которого превышает плотность рабочей жидкости, размещенный в середине канала.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано в системах инерциальной навигации. .

Изобретение относится к измерительной технике и может быть использовано в системах инерциальной навигации. .

Изобретение относится к области приборостроения и предназначено для измерения скорости и ускорения вращающихся объектов. .

Изобретение относится к линейным акселерометрам, предназначенным для измерения ускорения объектов различного класса и назначения. .

Изобретение относится к измерительной технике и может быть использовано в датчиках вибрации. .

Изобретение относится к измерительной технике, используется для определения ускорений звеньев механизма. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и позволяет расширить функциональные возможности устр-ва путем измерения линейного ускорения вдоль трех взаимно перпендикулярных осей и угла поворота вокруг оси, перпендикулярной плоскости датчика .

Изобретение относится к измерительной технике и позволяет снизить погрешности измерения. .

Изобретение относится к датчикам измерения ускорения движущегося объекта и может быть использовано в системах торможения различных транспортных средств

Изобретение относится к системам управления и измерительной технике и может быть использовано в качестве датчика управления подушками безопасности в автомобилях

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления, гравиметрии

Изобретение относится к измерительной технике и может найти применение в точном машиностроении и электронной технике

Изобретение относится к области измерительной техники, в частности к технике высокоточных измерений, и может быть использовано для измерения перемещений и вибраций

Изобретение относится к приборостроению, а именно к акселерометрам, предназначенным для измерения малых ускорений. Акселерометр содержит ячейку из двух параллельно установленных поляроидов с чувствительным элементом между ними, выполненным из прозрачного тензочувствительного материала - полиуретана, имеющего форму клина. Усилие на тензочувствительный элемент от инерционного элемента передается с помощью двойной рычажной системы, состоящей из груза, находящегося под действием измеряемого микроускорения, системы рычагов, опирающихся на опоры и площадки, воздействующих на чувствительный элемент. Для определения числа интерференционных полос используют веб-камеру, установленную с одной стороны ячейки, с другой стороны которой для равномерного освещения установлена подсветка из матового стекла и светодиодного источника света, при этом для предохранения системы от перегрузки в районе груза, находящегося под действием измеряемого микроускорения, установлена пружина. Изобретение обеспечивает увеличение чувствительности и точности измерений, возможность проведения измерений в условиях космической станции. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения, в частности к устройствам для измерения линейного ускорения. Волоконно-оптический преобразователь линейного ускорения состоит из двух каналов приемо-передачи оптического излучения и чувствительного элемента, включающего два устройства ориентации оптического излучения, выполненные из кварцевого стекла в форме параллелепипеда, частично покрытые зеркальным напылением, и устройство поглощения оптического излучения, которое консольно закреплено через прокладки между устройствами ориентации оптического излучения и выполнено в виде балки из светопоглощающего материала с грузом, закрепленным на ее конце. Между устройствами ориентации с противоположной стороны относительно устройства поглощения введена прокладка, обеспечивающая зазор между ними, при этом зеркальное напыление отсутствует на областях, соответствующих прямоугольной проекции консольно закрепленной балки на поверхности устройств ориентации оптического излучения. Изобретение расширяет функциональные возможности волоконно-оптического преобразователя на основе оптического туннельного эффекта для обеспечения измерения линейного ускорения. 2 ил.

Изобретение относится к области измерительной техники и касается линейного микроакселерометра с оптической системой. Микроакселерометр включает в себя корпус, две инерционные массы на упругих подвесах, два датчика положения, два компенсационных преобразователя. Датчики положения выполнены в виде двух пар монохроматических излучателей с различным спектром излучения и двух фотоприемников с цветоделением, имеющих не менее двух выходов спектральных диапазонов. Излучатели расположены над инерционной массой, а фотоприемники размещены в корпусе соосно с фотоприемниками. Монохроматические излучатели снабжены ограничителями светового потока. Технический результат заключается в повышении точности измерений и упрощении конструкции. 1 ил.

Изобретение относится к измерительной технике и может быть использовано в сейсмоприемных устройствах. Предложен сложенный маятник, который может быть реализован в виде монолитного маятника, который не расположен в вертикальной конфигурации, т.е. повернутый на 90°, либо в направлении по часовой стрелке, либо против часовой стрелки. В частности, вариант такого вертикального сложенного маятника в монолитной конфигурации представляет более компактную реализацию, охарактеризованную высоким разделением вертикальной степени свободы от других степеней свободы. Технический результат - достижение оптимальной механической добротности устройства. 3 н. и 13 з.п. ф-лы, 8 ил.

Изобретение относится к измерительной технике и может быть использовано в системах ориентации и навигации. Линейный микроакселерометр содержит основание, рамку с инерционной массой, закрепленной на упругих подвесах, датчик положения, источник напряжения, четыре компаратора, два усилителя тока, ключ, электромагнитный силовой привод, состоящий из 2N катушек, размещенных на 2N магнитопроводящих сердечниках, которые размещены с противоположных сторон рамки по N с каждой стороны, а на поверхности инерционной массы с каждой стороны расположены магнитопроводы, замыкающие магнитные потоки катушек, причем входы катушек подключены к выходу ключа, входы которого через компараторы подключены к датчику положения, который выполнен оптическим и состоит из излучателя, подключенного к источнику напряжения, и двух фотоприемников, при этом между излучателем и фотоприемниками расположены четыре оптических кабеля, а инерционная масса выполнена в виде маятника с возможностью совершения крутильных колебаний на упругих подвесах вокруг одной оси и содержит две заслонки, установленные с возможностью перекрытия светового потока между излучателем и фотоприемниками, размещенными на основании. Технический результат – повышение точности, расширение диапазона измеряемых ускорений и уменьшение нелинейности. 4 ил.
Наверх