Способ формирования выходного напряжения преобразователя электроэнергии

Использование: для управления преобразователями постоянного напряжения в переменное в системах электроприводов, электропитания и устройств автоматики. Технический результат заключается в повышении точности регулирования в адаптивном диапазоне с нормируемой погрешностью, регламентируемой шагом управления фазой. В способе формирования выходного напряжения циклически переключают ключи инвертора, которые формируют на нагрузке многофазное многоступенчатое напряжение, за счет программного управления фазой и амплитудой с точностью, определяемой шагом управления фазой в адаптивном диапазоне. 4 ил.

 

Предлагаемое изобретение относится к электротехнике и может быть использовано для управления преобразователями постоянного напряжения в переменное в системах электроприводов, электропитания и устройств автоматики.

Известен способ [см. Патент №1835121 (СССР), Н 02 М 7/48, 1993. Бюл. №30], заключающийся в осуществлении управления преобразователем постоянного напряжения в переменное многоступенчатое, в котором выходное напряжение формируется циклическим переключением преобразовательных модулей за период, причем заданный уровень выходного напряжения достигается за счет подключения определяемого числа преобразовательных модулей.

Недостатками этого способа являются низкая точность регулирования выходного напряжения, зависящая от числа модулей, и узкий диапазон регулирования, регламентированный жесткой структурой, высокая сложность реализации и низкая надежность.

За прототип принят способ [см. А.С. №1821884 (СССР), Н 02 М 7/72, 1993. Бюл. №22], заключающийся в формировании выходного двенадцатиступенчатого напряжения преобразователя электроэнергии за счет циклического переключения основных вентилей и регулирования фазы выходного напряжения путем изменения длительности включения дополнительных вентилей.

Недостатками прототипа являются низкая точность регулирования, обусловленная жестко заданным конечным количеством ступеней выходного напряжения, и узкий диапазон регулирования (10-12%), ограниченный жесткой структурой, высокая сложность реализации и низкая надежность.

Технической задачей способа является повышение точности регулирования в адаптивном диапазоне с нормируемой погрешностью, регламентированной цифровым эквивалентом.

Поставленная техническая задача достигается тем, что в способе формирования выходного напряжения преобразователя электроэнергии, реализуемом с помощью многофазного мостового инвертора, состоящего из анодных и катодных ключей, соединенных с нагрузкой, заключающемся в том, что циклически переключают ключи инвертора, которые формируют на нагрузке многофазное многоступенчатое напряжение, измеряют его действующее значение, которое сравнивают с мерой, и сдвигают многоступенчатое напряжение по фазе относительно меры, в отличие от прототипа мерой служит сигнал синусоидальной формы, относительно которого организуют сдвиг фазы многоступенчатого напряжения за счет программного управления коммутацией анодных и катодных ключей инвертора с точностью, регламентируемой шагом управления фазой многоступенчатого напряжения, причем при превышении действующим значением значения меры уменьшают фазу многоступенчатого напряжения, в противном случае - увеличивают пропорционально шагу управления фазой.

Сущность предлагаемого способа поясняют фиг.1-4 в основных формах представления функции: на уровне схем инвертора (фиг.1) и таблицы коммутации ключей (фиг.2) по циклической программе (2) синхронизирующих импульсов, реализующих алгоритм управления (5) тиристорами и формирования на нагрузке напряжения в виде временных диаграмм (фиг.3 и 4).

Предлагаемый способ реализуется с помощью многофазного мостового инвертора, состоящего из анодных и катодных ключей, соединенных с нагрузкой (фиг.1а).

Задают эталонный сигнал синусоидальной формы с требуемой частотой: Uэ=u0·Sin(ω · t), где Uэ - мгновенное значение напряжения, U0 - амплитуда, ω - частота эталонного сигнала.

Формируют на нагрузке синусоидальный сигнал ступенчатой формы Uj за счет программного управления таблицей коммутации инверторов в каждом периоде T управления. Период интервалов разбивают на число j состояний, пропорциональных числу n фаз (n=3), тактов переключения р, количеству подпрограмм управления l. Состояния заполняют потенциалами высокого или низкого уровня, соответствующими логическим состояниям “1” или “0”. Первый столбец таблицы коммутации формируют из последовательности “1” от первого состояния, но не более, чем до половины периода Т. Анодные столбцы 1, 3, 5 (2k-l, k=1,3) таблицы (фиг.2а) организуют циклическим сдвигом первого столбца на интервал, равный отношению периода к числу фаз T/3, катодные столбцы 2, 4, 6 (2k, k=1,3) заполняют по аналогии, начиная с половины периода T/2.

Например, для 12 состояний при j=12 (n=3, р=2, l=2), первый столбец таблицы коммутации: 111110000000, а таблица примет вид, представленный (фиг.2а) и соответствующими временными диаграммами (фиг.3а, б, в), иллюстрирующими импульсы циклического переключения ключей инвертора (фиг.1).

Для архитектуры "инвертор-звезда" соответственно граф-схеме фиг.1б по законам Кирхгофа для n фаз преобразования энергии от источников Е1 и Е2 получаем формулу:

где Y2k-1 и Y2k - проводимости тиристоров, коммутирующих соответственно источники Е1 и E2 к фазе Ak, U - потенциал общего узла схемы "звезда" с проводимостью Y фазных обмоток.

Режимы работы тиристоров на j-том состоянии определяются кодом Nj входной таблицы (фиг.2а)

где К - основание позиционного линейного кода; - вес кода на j-том состоянии в k-той позиции.

Преобразуем систему уравнений в форму, удобную для программирования кодом Nj

причем веса кодов связаны с физическими параметрами архитектуры, схемы фиг.1 и таблицы фиг.2, через проводимости Yk тиристоров и Y обмоток нагрузки следующими соотношениями

где Yjk=Y2k-1+Y2k+Y - суммарная проводимость k-того фазного узла структуры инвертора (фиг.1) на j-том состоянии (фиг.2), причем четные ξ j 2k и нечетные ξ j 2k-1 веса кодов Nj (2) инвариантны прямым α jk и инверсным термам физического состояния проводимости коммутаторов инвертора.

Ступенчатое напряжение Uj (фиг.3а, б, в) на нагрузке (фиг.1) получают коммутацией анодных 2k-1 и катодных 2k ключей инвертора по циклической программе, состоящей из последовательности j состояний, определяемых j-ми строками таблицы коммутации (фиг.2а), что соответствует последовательному, параллельному и смешанному соединению источника энергии и нагрузки:

Например, по формуле (4) и программе (2) для смешанного закона коммутации, заданной входной таблицей (фиг.2а), соответствует выходная таблица (фиг.2б) и временные диаграммы (фиг.3а, б, в) на нагрузке, подключенной по схеме “звезда” (фиг.1).

Измеряют действующее значение ступенчатого напряжения Uj, которое сравнивают с мерой Uэ по алгоритму:

если то т.к.

Управляют амплитудой ступенчатого напряжения Uj относительно амплитуды эталонного сигнала Uэ за счет изменения длительности последовательности “1” в первом столбце таблицы коммутации. При амплитуде ступенчатого напряжения Uj, меньшем амплитуды эталонного сигнала Uэ, добавляют число “1” при возрастании напряжения (уменьшают при убывании напряжения), добиваясь минимальной разницы амплитуд ступенчатого напряжения Uj и эталонного сигнала Uэ, определяемого заданной погрешностью, регламентированной одним состоянием (фиг.4г).

Например, для Т=64, при Uj<Uэ, фиг.4б, переходят от кода управления N1=11... 11000... 0000 (N10=30) к коду 11... 11100... 0000 (31), что вызывает увеличение сдвига фаз Δ ϕ и увеличение напряжения Uj фиг.4а, изменяя код до тех пор, пока неравенство не примет вид Uj Uэ.

Алгоритм управления (5) позволяет компенсировать реактивную составляющую мощности на нагрузке (фиг.1), изменяя фазу ϕ ступенчатого напряжения Uj относительно эталонного сигнала Uэ за счет изменения длительности последовательности “1” в первом столбце таблицы коммутации (фиг.2). При положительном сдвиге фаз Δ ϕ , например при коде 30 (фиг.4б), уменьшают число “1” до кода 29 (фиг.4в), а при отрицательном - увеличивают до 31 (фиг.4а), добиваясь минимального сдвига фаз, определяемого заданной погрешностью, регламентированной одним состоянием.

Точность предлагаемого способа регламентируется соотношением:

где ϕ - шаг управления фазой выходного напряжения.

Для прототипа шаг управления жестко задан аппаратно, а число тактов управления k=2, р=2:

Для заявленного способа k=2m, где m - цифровой эквивалент, ограничивается только быстродействием управляемых вентилей:

Точность регулирования способа относительно прототипа:

и выше прототипа в 2m раз для l=2.

Эффективность предлагаемого способа по точности с погрешностью ε 1 относительно погрешности прототипа ε 2 при равных диапазонах регулирования D1=D2 с учетом, что

определяется соотношением:

Для числовых эквивалентов находим соотношение погрешностей что доказывает повышение точности от 4 до 256 раз относительно прототипа при равных диапазонах регулирования.

При равных погрешностях управления ε 12 диапазон регулирования предлагаемого способа D1 с учетом, что

имеет вид:

Подстановка числовых эквивалентов отражает эффективность адаптации чтo доказывает расширение диапазона регулирования от 4 до 256 раз относительно прототипа при равных точностях регулирования.

Диапазон регулирования выходного напряжения прототипа ограничивается 10-12%, тогда как для заявленного способа он составляет 100%, так как способ позволяет синтезировать выходное напряжение в пределах от 0 до величины постоянного напряжения на входе.

Гибкость заявленного способа регламентируется использованием программного управления заполнения таблицы коммутации, а также непрерывным контролем выходного напряжения в реальном масштабе времени.

Простота реализации заявленного способа обуславливается отказом от использования дискретных элементов в системе управления вентилями в связи с переходом на более высокий уровень интеграции, что позволяет снизить как минимум на порядок сложность устройства и на порядок повысить надежность его работы.

Способ формирования выходного напряжения преобразователя электроэнергии, реализуемый с помощью многофазного мостового инвертора, состоящего из анодных и катодных ключей, соединенных с нагрузкой, заключающийся в том, что циклически переключают ключи инвертора, которые формируют на нагрузке многофазное многоступенчатое напряжение, измеряют его действующее значение, которое сравнивают с мерой, и сдвигают многоступенчатое напряжение по фазе относительно меры, отличающийся тем, что мерой служит сигнал синусоидальной формы, относительно которого организуют сдвиг фазы многоступенчатого напряжения за счет программного управления коммутацией анодных и катодных ключей инвертора с точностью, регламентируемой шагом управления фазой многоступенчатого напряжения, причем при превышении действующим значением значения меры уменьшают фазу многоступенчатого напряжения, в противном случае - увеличивают пропорционально шагу управления фазой.



 

Похожие патенты:

Изобретение относится к преобразовательной технике и может быть использовано для управления автономными инверторами напряжения в частотно-регулируемых электроприводах переменного тока.

Изобретение относится к силовой полупроводниковой технике и может быть использовано для регулирования скорости асинхронных и синхронных двигателей с помощью инверторов напряжения или тока.

Изобретение относится к автоматическому управлению и предназначено для следящих инверторов с двухполярной широтно-импульсной модуляцией (ШИМ) и с LC-фильтром в непрерывной части и может найти широкое применение в управлении электроприводами, регулируемыми источниками питания.

Изобретение относится к электротехнике, а точнее к системам управления реактивным индукторным электродвигателем для бытовой и автомобильной техники. .

Изобретение относится к электротехнике, а именно к вторичным источникам питания, применяемым в различных электротехнических и электротехнологических установках. .

Изобретение относится к электротехнике и может быть использовано в системах управления с тиристорными преобразователями частоты для электротехнологии. .

Изобретение относится к электротехнике, а точнее к системам управления реактивным индукторным электродвигателям для автомобильной техники. .

Изобретение относится к электронным схемам для преобразования электрической энергии, относящимся к тому типу, который описан в заявке на патент Франции N FR 2679715 A1, и к энергоустановке, в которой такие схемы используются.

Изобретение относится к электротехнике и может быть использовано для управления полупроводниковыми преобразователями электроэнергии

Изобретение относится к преобразовательной технике и может быть использовано в тиристорных преобразователях частоты для плавки металлов и специальных сплавов в вакууме

Изобретение относится к преобразовательной технике и может быть использовано в системах управления для установок индукционного нагрева

Изобретение относится к электротехнике, к векторному регулированию входных преобразователей электроподвижного состава переменного тока, и может быть использовано для регулирования заданных параметров четырехквадрантного преобразователя при изменяющейся нагрузке

Изобретение относится к мостовым компенсированным преобразователям переменного тока в постоянный с большим диапазоном регулирования, работающим с искусственной коммутацией катодной или анодной группы, а противоположная группа вентилей в режиме естественной коммутации

Изобретение относится к области электротехники и может быть использовано в выпрямительных установках с принудительной коммутацией, в качестве входных преобразователей на электроподвижном составе переменного тока

Изобретение относится к области электротехники и может быть использовано при проектировании источников централизованного электропитания

Изобретение относится к области электротехники и может быть использовано в статических преобразователях с разделительными трансформаторами для преобразования энергии постоянного тока в энергию переменного тока

Изобретение относится к автоматическому управлению и предназначено для мостовых инверторов с односторонней широтно-импульсной модуляцией
Наверх