Электролит для получения медного электролитического порошка

Изобретение относится к порошковой металлургии для получения порошка меди. Электролит содержит медный купорос безводный, серную кислоту и в качестве флокулянта сополимер акриламида с акриловой кислотой при следующем соотношении компонентов, г/л: медный купорос (безводный) - 55-69, серная кислота - 160-170, сополимер акриламида с акриловой кислотой - 0,003-0,006. Обеспечивается увеличение выхода медного порошка фракции более 75 мкм на 19-24%, снижение трудозатрат при съеме порошка и расхода катодных стержней. 1 табл.

 

Изобретение относится к электролитическому получению порошков и может быть использовано для получения порошков меди.

Известен электролит для получения порошка меди, содержащий сернокислую медь, сернокислый натрий, серную кислоту, сернокислый аммоний, моноэтаноламиды синтетических жирных кислот (авторское свидетельство СССР №1499990, Кл. С 25 С 5/02). Недостатками указанного электролита являются его многокомпонентность и дополнительные затраты на очистку отработанного электролита от щелочных металлов.

Наиболее близким по технической сущности и достигаемому результату является электролит для получения медного порошка электролизом, содержащий медный купорос, серную кислоту и добавку органического реагента - полиэтиленимина, который принят в качестве прототипа (авторское свидетельство СССР №1418349, Кл. С 25 С 5/02).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного электролита, относят низкую насыпную плотность, невысокое содержание фракции более 75 мкм, повышенный расход реагента и электроэнергии.

Анализ описанных выше аналога и прототипа выявил, что ни в одном из них не достигается желаемого результата - увеличение в медном порошке крупных фракций более 75 мкм насыпной плотностью 2,15-2,27 г/см3, а также снижение трудозатрат при съеме порошка, сокращение расхода катодных стержней в связи с уменьшением их заковки.

Указанный технический результат достигается за счет того, что в предлагаемый к защите электролит, содержащий безводный медный купорос и серную кислоту, дополнительно вводят в качестве флокулянта сополимер акриламида с акриловой кислотой при следующем соотношении компонентов, г/л: медный купорос (безводный) - 55-69, серная кислота - 160-170, флокулянт - 0,003-0,006.

Механизм действия флокулянта заключается в мостиковой флокуляции, которая обеспечивает притягивание ветвей дендритов к стволу и в равномерной адсорбции флокулянта, которая способствует сглаживанию растущих ответвлений. Следствием такого воздействия флокулянта является образование более компактных, плотных дендритов, которые более стойки к размолу.

Заявленный электролит для получения медного электролитического порошка отвечает всем критериям патентоспособности.

Сопоставительный анализ известных технических решений и заявляемого изобретения позволяет сделать вывод, что изобретение неизвестно из уровня техники и соответствует критерию «новизна».

Предлагаемое для патентной защиты изобретение имеет изобретательский уровень, т.к. его сущность для специалиста, занимающегося электролитическим получением порошков, явным образом не следует из известного уровня техники, т.е. не выявлены решения, имеющие признаки, совпадающие с отличительными признаками заявляемого электролита, а значит, и не может быть подтверждена известность отличительных признаков на указанный заявителем технический результат.

Заявленное изобретение является промышленно применимым, т.к. оно используется в производстве по своему прямому назначению.

Пример 1 (таблица, опыт 1)

Для получения медного порошка электролизом приготовлен водный электролит, содержащий, г/л: безводный медный купорос - 55; серная кислота - 160; флокулянт - 0,001.

Электролиз проводили в цеховых условиях в ваннах бункерного типа с пластинчатыми анодами и стержневыми катодами диаметром 1,2×10-2 м, при соотношении рабочей поверхности катодов и анодов 1:7. В электролизере поддерживали циркуляцию электролита 60-65 л/мин, температуру 50°С, подавали ток, обеспечивающий катодную плотность 3300 А/м2.

Электролиз вели полный анодный срок 90 часов, отбирали пробу, промывали ее, стабилизировали, анализировали гранулометрический состав по ГОСТ 4960-75, насыпную плотность по ГОСТ 19440-94.

Пример 2 (таблица, опыт 2)

Медный порошок получен из электролита состава, г/л: безводный медный купорос - 55; серная кислота - 160; флокулянт - 0,003. Остальные условия электролиза поддерживали аналогично примеру 1.

Пример 3 (таблица, опыт 3)

Медный порошок получен из электролита состава, г/л: безводный медный купорос - 60; серная кислота - 170; флокулянт - 0,006. Остальные условия электролиза поддерживали аналогично примеру 1.

Пример 4 (таблица, опыт 4)

Медный порошок получен из электролита состава, г/л: безводный медный купорос - 60; серная кислота - 160; флокулянт - 0,007. Остальные условия электролиза поддерживали аналогично примеру 1.

Пример 5 (таблица, опыт 5) по прототипу

Результаты опытов сведены в таблицу. Как следует из таблицы, оптимальная концентрация флокулянта - сополимера акриламида с акриловой кислотой составляет 0,003-0,006 г/л. При этих концентрациях обеспечивается необходимая насыпная плотность порошков после электролиза - 2,15-2,27 г/см3.

При меньших концентрациях сополимера акриламида с акриловой кислотой неполная блокировка молекулами добавки роста мелких боковых ответвлений кустов дендритов является причиной более низких значений насыпной плотности и процентного содержания фракций более 75 мкм. Увеличение концентрации сополимера акриламида с акриловой кислотой в электролите от 0,006 г/л приводит к увеличению отходов производства - «высевок», что нецелесообразно.

Положительные результаты использования электролита для получения медного электролитического порошка в цехе медных порошков ОАО «Уралэлектромедь» позволяют считать данный электролит промышленно применимым.

Преимущества промышленного использования заявляемого электролита:

1. Увеличение выхода медного порошка фракции более 75 мкм (тяжелого медного порошка) на 19-24%.

2. Снижение трудозатрат при съеме порошка.

3. Снижение расхода катодных стержней из-за уменьшения их заковки.

ТАБЛИЦА
№ опытаСодержание компонентов, г/лСодержание фракции >75 мкм, %Насыпная плотность, г/см3
Безводный медный купоросСерная кислотаСополимер акриламида с акриловой кислотой
1551600,001801,62
2551600,003962,15
3601700,00699,72,27
4601600,007Увеличивается % отходов производства2,6
5прототип881,6

Электролит для получения медного электролитического порошка, содержащий медный купорос (безводный), серную кислоту и флокулянт, отличающийся тем, что в качестве флокулянта он содержит сополимер акриламида с акриловой кислотой при следующем соотношении компонентов, г/л:

медный купорос (безводный) 55-69
серная кислота 160-170
сополимер акриламида с акриловой кислотой 0,003-0,006



 

Похожие патенты:
Изобретение относится к получению порошка серебра. .

Изобретение относится к порошковой металлургии, в частности к устройствам для получения порошков металла электролизом. .

Изобретение относится к очистке промышленных сточных вод. .

Изобретение относится к получению композиционных материалов, в состав которых входит дисперсные частицы металлов, в частности к получению каталитически активных материалов.

Изобретение относится к порошковой металлургии и позволяет получать электролитическим способом высокодисперсные металлические порошки повышенной дисперсности, имеющие стабильные магнитные свойства и пониженную полидисперсность.

Изобретение относится к порошковой металлургии, в частности к способам получения высокодисперсных порошков металлов и сплавов, и может быть использовано при изготовлении композиционных материалов для радиоэлектроники, высокочастотной, импульсной техники и др.

Изобретение относится к синтезу неорганических веществ, к электрохимическому способу получения металлов, в частности тонкодисперсного порошка элементного мышьяка.

Изобретение относится к электролизу тяжелых цветных металлов. .

Изобретение относится к порошковой металлургии и может быть использовано при получении медного порошка электролизом из водных растворов электролитов. .

Изобретение относится к получению порошков чистых металлов и соединений металлов субмикронного размера в ванне с жидкостью. .

Изобретение относится к порошковой металлургии и может быть использовано в электронной промышленности при изготовлении электродов керамических конденсаторов. .

Изобретение относится к переработке висмутсодержащих материалов с получением порошкообразного висмута. .

Изобретение относится к получению порошка индия высокой чистоты при переработке цинк-индийсодержащих промпродуктов и отходов. .

Изобретение относится к цветной металлургии и может быть использовано при переработке цинкиндийсодержащих материалов с получением высокодисперсного индиевого порошка.
Изобретение относится к составам для получения покрытий с бактерицидными свойствами, преимущественно для лакокрасочных материалов, пленкообразователей, пропиток, сухих смесей, которые могут быть использованы в строительстве, медицине и различных других областях техники.

Изобретение относится к способу извлечения меди из водных растворов в виде металлического порошка, например из отработанных промышленных растворов гальванического, металлургического производства.

Изобретение относится к области порошковой металлургии и может быть использовано для получения металлических композиционных материалов, таких, как цементированный карбид.

Изобретение относится к области порошковой металлургии и может быть использовано в электронной промышленности, в частности в производстве монолитных керамических конденсаторов для токопроводящих элементов.

Изобретение относится к способам получения наноструктурных металлических и биметаллических частиц, используемых в различных областях техники и медицины. .
Изобретение относится к порошковой металлургии, в частности к получению наноразмерных металлсодержащих частиц
Наверх