Рентгенографическая установка сканирующего типа (варианты)

Использование: для сканирования рентгеновским излучением. Сущность: заключается в том, что в корпусе детектора, куда попадает излучение, прошедшее через изучаемый объект, размещен плоский конденсатор, анод которого сплошной, а катод разбит на полоски, и к каждой из них подсоединен индивидуальный накопительный конденсатор, заряд с которого считывается электроникой, что позволяет установке работать в интегральном режиме. В детекторе предусматриваются также дополнительные вставки на входе излучения и в конце по ходу луча, что уменьшает потери рентгеновского излучения, задает необходимое разрешение в направлении сканирования и снижает требования к допустимому уровню вибраций и юстировки отдельных частей сканирующей системы. Технический результат: упрощение конструкции и повышение ее надежности, повышение разрешающей способности установки и повышение эффективности регистрации рентгеновских квантов. 2 н. и 6 з.п. ф-лы, 2 ил.

 

Изобретение относится к области регистрации рентгеновского излучения и может быть использовано как в медицинской рентгенографии, так и для досмотра людей в целях безопасности для обнаружения спрятанных на/в теле, в одежде опасных и скрываемых предметов и веществ.

В настоящее время для целей рентгенодиагностики нашли широкое применение цифровые рентгенографические системы, которые, используя метод сканирования изучаемого объекта, позволяют получать изображение при низком уровне дозы облучения пациентов. Для регистрации излучения в таких установках использовались многопроволочные пропорциональные камеры (МПК) [1-4] и разработанные позднее сцинтилляционные детекторы [5].

Однако особенности, связанные с конструкцией и принципом работы МПК, ограничивают возможности этого детектора из-за недостаточной разрешающей способности.

Разрешающая способность сцинтилляционных детекторов также не превышает по величине 1-2 пары линий на миллиметр. В детекторах с изолированными по свету каналами минимальная ширина канала составляет 1 мм [6]. А в детекторах с неизолированными по свету каналами, таких, какие использованы в работе [5], пространственное разрешение ограничено связью по свету соседних каналов и составляет 1, 3 пар линий на миллиметр. Уменьшение толщины сцинтиллятора для улучшения разрешения приводит к ухудшению качества детектора из-за падения эффективности регистрации фотонов.

Известна сканирующая установка [7], в которой используется сцинтилляционный детектор. Полученное оптическое изображение усиливается, а затем преобразуется в цифровой вид. Дальнейшая обработка цифрового изображения позволяет получить изображение всего тела. Разрешающая способность этой установки низкая.

Наиболее близко к предлагаемой установке по техническим признакам радиографическое устройство высокого разрешения, защищенное патентом US №5959302 [8].

Эта установка включает источник ионизирующего излучения в форме расходящегося пучка, коллиматор в виде продольной щели, приспособленной для создания плоского пучка излучения, устройство регистрации плоского пучка излучения, прошедшего через изучаемый объект и считывающую электронику. Устройство регистрации содержит, по крайней мере, один детектор ионизирующих частиц, который представляет собой газовую камеру с окном для бокового или фронтального входа излучения, первого, второго и третьего плоских электродов, установленных параллельно друг другу. В пространстве между первым и вторым электродом пучок излучения конвертирует в электроны, а в пространстве между вторым и третьим электродами происходит усиление путем умножения этих электронов.

Недостатком этого устройства является наличие системы из трех электродов, в которой второй электрод должен быть прозрачным, для того чтобы электроны, образованные в конверсионном пространстве, попали в пространство усиления. Такой электрод обычно изготавливается из проволок, которые при сканировании вибрируют, что существенно ухудшает работу детектора.

Кроме того, наличие газового усиления ограничивает быстродействие детектора из-за влияния объемного заряда и не позволяет заполнять детектор газом под давлением выше 106 Па (10 атм), что ограничивает пространственное разрешение. Другим недостатком, связанным с использованием газового усиления, является требование к чистоте рабочей газовой смеси и, следовательно, необходимость ее частой смены.

Задача предлагаемого изобретения - создание рентгенографической установки, имеющей высокое разрешение, более эффективную регистрацию рентгеновских квантов, обеспечивающей большую загрузочную способность и обладающей более простой конструкцией, следовательно, более надежной.

Поставленная задача решена за счет того, что в известной рентгенографической установке сканирующего типа, включающей источник ионизирующего излучения, коллиматор в виде продольной щели, предназначенный для создания плоского пучка излучения и устройство регистрации пучка излучения, прошедшего через изучаемый объект, включающее электронику считывания, обработки и вывода данных и, по крайней мере, один детектор ионизирующих частиц, представляющий собой герметичный корпус, заполненный газом, позволяющий вводить в детектор рентгеновское излучение, в корпусе размещен плоский конденсатор с расположенными параллельно пучку излучения с обеих сторон от него сплошным анодом и катодом, разбитым на полоски, расположенные веерообразно и ориентированные на одну точку, в которой размещается фокус рентгеновского источника, длина полосок катода выбрана из условия полного поглощения в газе рентгеновского излучения, причем каждая полоска соединена с индивидуальным накопительным конденсатором, заряд с которого считывается электроникой.

Для увеличения эффективности регистрации пространство между стенкой корпуса в месте входа излучения и плоским конденсатором может быть заполнено диэлектрической вставкой, имеющей более низкую рентгенопоглощающую способность по сравнению с заполняющим газом.

Диэлектрическая вставка может частично располагаться между анодом и катодом плоского конденсатора.

Для обеспечения заданного разрешения в направлении сканирования анод и катод плоского конденсатора на передних кромках по ходу рентгеновского пучка снабжены пластинками из рентгенопоглощающего материала, которые вместе с расположенной между ними диэлектрической вставкой образуют входную диафрагму.

Между анодом и катодом в конце по ходу луча может быть помещена дополнительная вставка, предназначенная для фиксации зазора между ними.

Корпус детектора выполнен из рентгенопрозрачного материала, по крайней мере в месте входа рентгеновского излучения.

Введение конденсаторов, присоединенных к катодным полоскам, обуславливает режим работы с накоплением заряда (интегральный режим), в отличие от режима счета отдельных рентгеновских квантов, реализованного в устройстве [8].

Длину полосок катода выбирают из условия полного поглощения в газе рентгеновского излучения [9], при этом длина полосок катода, соответствующая условию полного поглощения рентгеновского излучения, является оптимальной. Увеличение длины полосок эффективность регистрации практически не меняет и только увеличивает размер конструкции. Условием, определяющим нижнее ограничение длин полосок катода, может служить минимально приемлемое для регистрирующей аппаратуры соотношение сигнал/шум.

Введение диэлектрической вставки в пространство между стенкой корпуса в месте входа излучения и плоским конденсатором уменьшает потери рентгеновского излучения и, таким образом, повышает эффективность регистрации.

Наличие диафрагмы, образованной пластинками из рентгенопоглощающего материала и диэлектрической вставкой, задает необходимое разрешение в направлении сканирования и снижает требования к допустимому уровню вибраций и юстировки отдельных частей и сканирующей системы.

Описание изобретения поясняется чертежами, где на фиг.1 дан общий вид установки, а на фиг.2 - конструкция детектора рентгеновского излучения, прошедшего через исследуемый объект. На фигурах:

1 - рентгеновская трубка,

2 - коллиматор,

3 - плоский пучок рентгеновского излучения,

4 - детектор рентгеновского излучения,

5 - исследуемый объект,

6 - корпус детектора,

7 - сплошной анод,

8 - катод, состоящий из отдельных полосок,

9 - диэлектрическая вставка,

10 - пластинки на электродах,

11 - дополнительная вставка,

12 - электроника считывания, обработки и вывода данных.

Конструкция установки включает: источник ионизирующего излучения 1, коллиматор 2 в виде продольной щели, предназначенный для создания плоского пучка излучения 3, детектор 4 излучения, прошедшего через изучаемый объект 5, представляющий собой герметичный корпус 6, заполненный газом под давлением 20-40 атм, выполненный из рентгенопрозрачного материала, по крайней мере, в месте входа рентгеновского излучения, в котором размещен плоский конденсатор со сплошным анодом 7 и катодом 8, разбитым на полоски. Анод и катод расположены по разные стороны плоского пучка излучения, прошедшего через исследуемый объект параллельно ему. Для устранения параллакса полоски расположены веерообразно и ориентированы на одну точку, в которой размещается фокус рентгеновского источника. Длина полосок выбрана такой, чтобы вероятность взаимодействия рентгеновского излучения с газом в зазоре между катодом и анодом была близка к 100%. В конкретном выполнении длина полосок составляла от 2 до 10 см, а шаг полосок от 0,1 до 2 мм. Диэлектрическая вставка 9 размещена между стеной корпуса в месте входа излучения и плоским конденсатором с частичным заходом в пространство между анодом 7 и катодом 8 конденсатора. Пластинки 10 из рентгенопоглощающего материала, закрепленные на торцах анода 7 и катода 8, образуют вместе с вставкой 9 диафрагму, обеспечивающую необходимое разрешение в направлении сканирования. Дополнительная вставка 11, расположенная между анодом и катодом в конце по ходу луча, предназначена для фиксации зазора между ними. Электроника считывания, обработки и вывода данных 12 размещена частично внутри корпуса детектора, частично за его пределами.

Установка работает следующим образом: рентгеновское излучение от источника 1 проходит через коллиматор 2, принимая форму плоского пучка 3, и, пройдя через исследуемый объект 5, попадает в детектор 4, в зазор между электродами 7 и 8 плоского конденсатора, находящегося под высоковольтным напряжением, в котором ионизирует газ, заполняющий корпус 6, образуя электроны и ионы. Под действием электрического поля заряды дрейфуют к аноду 7 и катоду 8, заряжая конденсаторы, подсоединенные к полоскам катода 8. Заряд, накопленный на каждой полоске, измеряется электроникой считывания, обработки и вывода данных 12. Рентгеновское изображение формируется путем сканирования детектора вместе с источником излучения вдоль исследуемого объекта 5.

Источники информации

1. С.Е.Бару и др. Авторское свидетельство СССР №1505214, МКИ G 01 Т 5/12, 1987.

2. С.Е.Бару и др. Авторское свидетельство СССР №1615651, МКИ G 01 Т 5/12, 1987.

3. Е.А.Babichev et al., Nucl. Instr. and Meth. A 323 (1992) 49.

4. S.E. Ваru et al. Nucl. Instr. and Meth. in Phys. Res. A 392 (1997) 12.

5. С.Н.Селезнев и др. Автометрия. 1996. №6. С.80.

6. Сцинтиэлектронные детекторы радиации (СЭЛДИ) - твердотельные детекторы нового поколения. Состояние, перспективы развития, промышленное использование В.Д.Рыжиков, и др.: Препринт. - Харьков: Научно-технический концерн “Институт монокристаллов”. - 1996.

7. Патент ЕР №0597725, МКИ5 G 01 V 5/00, 12.11.93.

8. Патент US 5959302, МКИ6 G 01 T 1/185, 27.05.97.

9. О.Ф.Немец, Ю.В.Гофман. Справочник по ядерной физике. Киев: Наукова думка, 1975, стр. 218.

1. Рентгенографическая установка сканирующего типа, включающая источник ионизирующего излучения, коллиматор в виде продольной щели, предназначенной для создания плоского пучка излучения и устройство регистрации пучка излучения, прошедшего через изучаемый объект, которое включает электронику считывания, обработки и вывода данных, и, по крайней мере, один детектор ионизирующих частиц, представляющий собой герметичный корпус, заполненный газом, позволяющий вводить в детектор рентгеновское излучение, отличающаяся тем, что в корпусе размещен плоский конденсатор с расположенными параллельно пучку излучения с обеих сторон от него сплошным анодом и катодом, разбитым на полоски, длина которых выбрана из условия полного поглощения в газе рентгеновского излучения, причем к каждой полоске катода подсоединен индивидуальный накопительный конденсатор, заряд с которого считывается электроникой.

2. Установка по п.1, отличающаяся тем, что между анодом и катодом плоского конденсатора в конце по ходу луча помещена дополнительная вставка, предназначенная, в частности, для фиксации зазора между ними.

3. Установка по п.1, отличающаяся тем, что корпус детектора выполнен из рентгенопрозрачного материала, по крайней мере, в месте входа рентгеновского излучения.

4. Рентгенографическая установка сканирующего типа, включающая источник ионизирующего излучения, коллиматор в виде продольной щели, предназначенной для создания плоского пучка излучения и устройство регистрации пучка излучения, прошедшего через изучаемый объект, которое включает электронику считывания, обработки и вывода данных, и, по крайней мере, один детектор ионизирующих частиц, представляющий собой герметичный корпус, заполненный газом, позволяющий вводить в детектор рентгеновское излучение, отличающаяся тем, что в корпусе размещен плоский конденсатор с расположенными параллельно пучку излучения с обеих сторон от него сплошным анодом и катодом, разбитым на полоски, длина которых выбрана из условия полного поглощения в газе рентгеновского излучения, причем к каждой полоске катода подсоединен индивидуальный накопительный конденсатор, заряд с которого считывается электроникой, а пространство между стенкой корпуса в месте входа излучения и плоским конденсатором, заполнено вставкой из диэлектрического материала, имеющего более низкую рентгенопоглощающую способность по сравнению с наполняющим газом.

5. Установка по п.4, отличающаяся тем, что между анодом и катодом плоского конденсатора в конце по ходу луча помещена дополнительная вставка, предназначенная, в частности, для фиксации зазора между ними.

6. Установка по п.4, отличающаяся тем, что корпус детектора выполнен из рентгенопрозрачного материала, по крайней мере, в месте входа рентгеновского излучения.

7. Установка по п.4, отличающаяся тем, что диэлектрическая вставка частично расположена в зазоре между анодом и катодом плоского конденсатора.

8. Установка по п.7, отличающаяся тем, что анод и катод плоского конденсатора на предних кромках по ходу луча снабжены пластинками из рентгенопоглощающего материала, которые вместе с расположенной между ними диэлектрической вставкой образуют входную диафрагму, обеспечивающую заданный размер канала в направлении сканирования.



 

Похожие патенты:

Изобретение относится к области аналитического приборостроения и, в частности, к ультрафиолетовым (УФ) лампам, и фотоионизационным газоанализаторам на их основе. .

Изобретение относится к области распространения электромагнитных волн в средах. .

Изобретение относится к электротехнике, в частности к устройствам контроля ядерных реакторов, в которых осуществляют преобразование плотности нейтронного потока и потока гамма-квантов, на различных уровнях по высоте активной зоны, в выходные электрические сигналы на всех режимах работы реакторной установки.

Изобретение относится к экспонометрии, в частности к ионизационным камерам рентгеноэкспонометров, и предназначено для промышленной рентгенографии материалов и изделий, используемых при производстве снимков.

Изобретение относится к экспонометрии и предназначено для промышленной рентгенографии материалов и изделий, в частности к ионизационным камерам рентгеноэкспонометров, используемых при производстве снимков.

Изобретение относится к детектирующим элементам, а именно к устройствам, в которых происходит регистрация гамма-квантов с высоким энергетическим разрешением и потоков нейтронов одновременно, за счет взаимодействия гамма-излучения и нейтронов с рабочим веществом детектора, и может быть использовано для оперативного обнаружения и идентификации гамма-нейтронного излучения от различных объектов, применяемых в ядерно-физических исследованиях и атомной энергетике, для технологического контроля при переработке ядерного топлива, для реакторной диагностики, для исследования нефте-газовых скважин, а также для контроля за перемещением гамма-нейтронных источников на таможне и т.д

Изобретение относится к области регистрации ионизирующего излучения и может найти применение в измерении энергий альфа-частиц

Изобретение относится к регистрации нейтронов и гамма-излучений, преимущественно регистрации нейтронов в системах управления и защиты (СУЗ) ядерных реакторов

Изобретение относится к способам измерений интенсивности источников ВУФ-излучения и устройствам для их осуществления. В способе измерения интенсивности источников ВУФ-излучения через проточную ионизационную камеру, облучаемую источником ВУФ-излучения, пропускают поток ионизуемого вещества и измеряют ионизационный ток, а затем по величине ионизационного тока и квантового выхода рассчитывают поток ВУФ-излучения. Через ионизационную камеру пропускают смесь газа, прозрачного для ВУФ-излучения, с содержанием ионизуемого вещества от 1000 ppm до 10000 ppm при давлении не ниже атмосферного, причем в состав смеси добавляют компонент, поглощающий ВУФ-излучение, но не ионизуемый этим излучением, с концентрацией 0,5-20% по объему. Описано также устройство для осуществления способа, содержащее проточную ионизационную камеру с источником ВУФ-излучения, облучающим внутренний объем камеры, два электрода для измерения ионизационного тока, патрубки для подвода и отвода ионизуемого вещества. В устройство введен баллон, содержащий смесь прозрачного для ВУФ-излучения газа с ионизуемым веществом, концентрация которого составляет от 1000 ppm до 10000 ppm, находящуюся при давлении выше атмосферного, причем в потоке газа, поступающего в проточную ионизационную камеру, установлены регулятор расхода и измеритель расхода газа. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к области регистрации рентгеновского излучения и может быть использовано для визуализации внутренней структуры объектов в медицинской диагностике, в системах досмотра, дефектоскопии и т.п. Многоканальная газовая ионизационная камера содержит заполненный газом корпус, прозрачный для рентгеновских лучей, по крайней мере, в месте их ввода, в котором размещен плоский конденсатор с расположенными параллельно пучку вводимого рентгеновского излучения сплошным анодом и катодом, разделенным на элементы, снабженные регистрирующей электроникой, которые образуют матрицу, имеющую не менее двух строк, столбцы матрицы ориентированы вдоль рентгеновских лучей, при этом в первой по ходу рентгеновских лучей строке матрицы регистрируются преимущественно кванты более низких энергий, а в каждой последующей - кванты все более высоких энергий. Технический результат - возможность при выполнении одной процедуры съемки одновременно получить несколько изображений объектов при разных эффективных энергиях излучения, что упрощает процесс досмотра людей и багажа. 2 ил.

Изобретение относится к устройству контроля ядерных реакторов, которые осуществляют преобразование плотности потока тепловых нейтронов (ППТН) и потока гамма-квантов в выходные электрические сигналы на всех режимах работы реакторной установки. Заявленное устройство включает источник быстрых нейтронов (ИБН), контейнер безопасного хранения ИБН, канал для перемещения ИБН между контейнером и ионизационной камерой, съемный механизм перемещения ИБН. Контроль коэффициента преобразования осуществляется в период заглушения работы реактора, при этом ИБН установлен около ионизационной камеры, путем сравнения величины сигнала от ИБН с паспортными данными, полученными при изготовлении ПИК от такого же ИБН. В период работы ядерного реактора ИБН находится в контейнере безопасного хранения ПИК. Предусмотрен вариант устройства, в котором для контроля нескольких ПИК используется один ИБН и один механизм его перемещения. Техническим результатом является возможность контролировать стабильность коэффициента преобразования ППТН в электрические сигналы при длительной (более 30 лет) эксплуатации, а также возможность контроля целостности цепей и стабильности работы системы управления и защиты ядерного реактора, что существенно повышает надежность работы реактора. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области регистрации альфа-излучения и может использоваться для измерения энергий альфа-частиц в атомной, ядерной отраслям промышленности. Спектрометрическая импульсная ионизационная камера включает модуль газонаполнения, выполненный в виде системы электромагнитных пневматических клапанов, соединенных таким образом, чтобы обеспечить подключение внутреннего газового объема импульсной ионизационной камеры попеременно к источнику газовой смеси, вакуумному насосу, линии сброса избыточного давления, либо полной отсечки газового объема. Герметичный корпус, заполненный газовой смесью, с размещенными внутри корпуса анодом, окруженным охранным кольцом, электродом, называемым сеткой, неподвижно закрепленным катодом, имеющим паз, через который подаются в чувствительный объем тарелки, являющиеся держателями измеряемого образца. Поворотный диск с установленными на нем тарелками, поворотным и подъемным устройствами, выполненными таким образом, чтобы в совокупности осуществлять размещение в чувствительном объеме спектрометрической ионизационной камеры и последующее извлечение измеряемых образцов, размещенных на тарелках, без нарушения герметичности ионизационной камеры. Поворотное и подъемное устройства приводятся в действие мотор-редукторами, размещенными внутри герметичного корпуса, управление которыми производится при помощи программируемого электронного устройства, осуществляющего контроль давления внутри герметичного корпуса посредством вакуумметра и датчика давления, контроль положения поворотного устройства при помощи датчиков основного положения, а также подающего в соответствии с заложенной программой управляющие сигналы на пневматические клапаны и мотор-редукторы. Технический результат - повышение точности и надежности измерений. 4 ил.

Изобретение относится к детектору излучения, в частности электромагнитного излучения большой мощности. Детектор содержит секцию преобразования, включающую катод (3), для преобразования излучения (Р), падающего на секцию преобразования, в электроны (Е) с помощью фотоэлектрического эффекта. Детектор дополнительно включает газовый электронный умножитель (4) для создания электронной лавины из электронов (Е), которые создаются в секции преобразования и входят в газовый электронный умножитель (4), при этом газовый электронный умножитель (4) содержит первый электрод (5), диэлектрический слой (6) и второй электрод (7), при этом первый электрод (5) расположен на первой стороне диэлектрического слоя (6) вблизи секции преобразования, и второй электрод (7) расположен на второй стороне диэлектрического слоя (6), противоположной первой стороне. Газовый электронный умножитель (4) содержит несколько отверстий (9), заполненных газом, при этом указанные отверстия (9) проходят через первый электрод (5), диэлектрический слой (6) и второй электрод (7). Кроме того, детектор включает детекторный анод (8) вблизи второго электрода (7) для обнаружения лавины электронов. Детекторный анод (8) проходит у каждого отверстия (9) газового электронного умножителя (4) от второго электрода (7) над отверстием (9) так, что отверстие на одной стороне полностью закрыто детекторным анодом (8). Положение детекторного анода (8) смещено вниз относительно плоскости второго электрода (7), причем одно или более отверстий (9) проходят через детекторный анод (8). Технический результат - повышение точности измерения. 15 з.п. ф-лы, 5 ил.
Наверх