Способ регулирования выходного напряжения преобразователя переменного тока в постоянный

Изобретение относится к области преобразовательной техники и может использоваться в системах электропитания технологических нагрузок с глубоким регулированием выходного напряжения и активной коррекцией коэффициента мощности. Технический результат изобретения - расширение диапазона регулирования выходного напряжения с заданной величиной коэффициента мощности. Способ регулирования выходного напряжения преобразователя переменного тока в постоянный, содержащего неуправляемый мостовой выпрямитель, сглаживающий LC-фильтр с двухоперационным ключом, датчик потребляемого тока и датчик входного напряжения, заключается в том, что осуществляют сравнение сигнала датчика потребляемого тока с опорным сигналом, формируемым датчиком входного напряжения, и в случае превышения опорного сигнала включают, а в случае превышения сигнала датчика потребляемого тока выключают двухоперационный ключ. Для достижения поставленной цели в моменты коммутаций двухоперационного ключа осуществляют модуляцию величины коэффициента передачи датчика входного напряжения, поддерживая высокое значение Кв при включенном, низкое значение Кн при выключенном состояниях двухоперационного ключа и сохраняя неизменной глубину модуляции ΔК=(Квн) коэффициента передачи датчика входного напряжения. 3 ил.

 

Изобретение относится к области преобразовательной техники и может использоваться в системах электропитания технологических нагрузок с глубоким регулированием выходного напряжения и активной коррекцией коэффициента мощности.

Известен способ регулирования выходного напряжения преобразователя переменного тока в постоянный, содержащего неуправляемый мостовой выпрямитель, сглаживающий LC-фильтр с двухоперационным ключом, датчик потребляемого тока и датчик входного напряжения, заключающийся в том, что коммутации двухоперационного ключа осуществляют с частотой, многократно превышающей частоту входного переменного напряжения, причем включение производят при нулевом значении сигнала датчика потребляемого тока, а выключение осуществляют в момент возрастания последнего до значения опорного сигнала, формируемого датчиком входного напряжения [1].

Недостатком известного способа является ограниченный диапазон регулирования выходного напряжения, поскольку значительная часть области возможных значений (0÷ 1) относительной продолжительности включения двухоперационного ключа должна модулироваться по синусоидальному закону для активной коррекции коэффициента мощности путем формирования квазисинусоидальной формы потребляемого тока. Однако существенные пульсации потребляемого тока на частоте коммутаций двухоперационного ключа ограничивает и величину коэффициента мощности.

Наиболее близким по технической сущности к предлагаемому является способ регулирования выходного напряжения преобразователя переменного тока в постоянный, содержащего неуправляемый мостовой выпрямитель, сглаживающий LC-фильтр с двухоперационным ключом, датчик потребляемого тока и датчик входного напряжения, заключающийся в том, что осуществляют сравнение сигнала датчика потребляемого тока с опорным сигналом, формируемым датчиком входного напряжения, и в случае превышения опорного сигнала включают, а в случае превышения сигнала датчика потребляемого тока выключают двухоперационный ключ [2].

Недостатком известного способа является ограниченный диапазона регулирования выходного напряжения, осуществляемого изменением частоты коммутаций двухоперационного ключа, верхнее значение которой ограничено допустимым уровнем динамических потерь в двухоперационном ключе, а нижнее значение ограничено требованием поддержания квазисинусоидальной формы потребляемого тока для активной коррекции коэффициента мощности. Снижение частоты коммутаций двухоперационного ключа снижает точность формирования квазисинусоидальной формы потребляемого тока и соответственно величину коэффициента мощности.

Цель предлагаемого изобретения состоит в расширении диапазона регулирования выходного напряжения при сохранении заданной величины коэффициента мощности.

Поставленная цель достигается тем, что в моменты коммутаций двухоперационного ключа осуществляют модуляцию величины коэффициента передачи датчика входного напряжения, поддерживая высокое значение Кв при включенном, низкое значение Кн при выключенном состояниях двухоперационного ключа и сохраняя неизменной глубину модуляции Δ К=(Kвн) коэффициента передачи датчика входного напряжения.

На фиг.1 изображена схема устройства для реализации предлагаемого способа; на фиг.2 - графическое изображение гистерезисной функции сравнения; на фиг.3 - временные диаграммы, поясняющие сущность предлагаемого способа.

Устройство, реализующее предлагаемый способ, содержит неуправляемый мостовой выпрямитель 1, сглаживающий LC-фильтр, образованный дросселем 2 и конденсатором 3, двухканальный релятор 4, в состав которого входит дифференциальный компаратор 5, управляющий замыкающим 6 и размыкающим 7 ключами информационного переключательного канала 8, а также замыкающим 9 и размыкающим 10 ключами силового переключательного канала 11, датчик входного напряжения 12, датчик потребляемого тока 13. Датчик входного напряжения 12 имеет два выхода, один с коэффициентом передачи Kв, другой с коэффициентом передачи КН, которые подключены к информационному переключательному каналу 8. Выходы датчика потребляемого тока 13 и информационного переключательного канала 8 подключены к инверсному и прямому входам соответственно дифференциального компаратора 5. Замыкающий 9 и размыкающий 10 ключи силового переключательного канала 11 включены между дросселем 2 и разнополярными выводами конденсатора 3, к которым подключена нагрузка 14. В силовом переключательном канале 11 размыкающий ключ 10 должен быть двухоперационным, для замыкающего ключа 9 допускается простейшая реализация в виде диода.

Способ регулирования выходного напряжения состоит в следующем.

Двухканальный релятор 4 воспроизводит базовые операции предикатной алгебры выбора (ПАВ), которыми являются ПАВ-дизъюнкция (V) и ПАВ-конъюнкция (Λ )

V(y1,y2)=y1·I(x1-x2)+y2·I(x2-x1),

Λ (y1,y2)=y1·I(x2-x1)+y2·I(x1-x2),

где y1,y2 - предметные переменные, в общем случае любые физические параметры, действующие на входах информационного 8(y1i,y2i) или силового 11(y1F,y2F) переключательных каналов; х12 - предикатные переменные, действующие на входах дифференциального компаратора 5; I(х) - единичная функция, равная 0 при х<0 или 1 при х>0, формируемая на выходе дифференциального компаратора 5.

Для информационного переключательного канала 8 предметные переменные определяются выходными сигналами датчика входного напряжения 12

y1i=Kн·|e(t)| , y2i=KВ·|e(t)| ,

где e(t) - входное переменное напряжение мостового выпрямителя 1.

Коэффициенты передачи датчика входного напряжения 12 могут изменяться в широких пределах при сохранении соотношения KВН, обеспечивая соотношение предметных переменных y2i>y1i, одна из которых в предельном случае может поддерживаться на минимальном уровне y1i=0 заданием КН=0.

Для силового переключательного канала 11 предметными переменными y1F,y2F служит ток дросселя 2, представляющий собой модуль-функцию потребляемого тока iП=0, т.е.

Y1F=y2F=| iП(t)| .

Предикатная переменная х2 на инверсном входе дифференциального компаратора 5 определяется выходным сигналом uт датчика потребляемого тока 13

x2=uТ=Kт·rТ·|iП(t)| .

где КТ, rТ - коэффициент передачи и внутреннее сопротивление датчика потребляемого тока 13.

Предикатная переменная x1 на прямом входе дифференциального компаратора 5 определяется ПАВ-функцией гистерезисного типа, формируемой информационным переключательным каналом 8 двухканального релятора 4

Z=x1=| e(t)| · [KВ·I(Z-x2)+KН·I(x2-Z)],

графическое изображение которой представлено на фиг.2.

Как видно из фиг.2, перемещение изображающей точки при увеличении или уменьшении предикатной переменной х2 (мгновенных значений потребляемого тока) происходит по петле гистерезиса до “упоров”, задаваемых предметными переменными y1i,y2i и соответственно параметрами датчика входного напряжения 12, т.е. значениями коэффициентов передачи KВ и КН.

Пока x12, выходной сигнал дифференциального компаратора 5, равный I(x12)=0, поддерживает ключи 6, 7 информационного переключательного канала 8 и ключи 9, 10 силового переключательного канала 11 в положении, изображенном на фиг.1. Под действием выходного напряжения | e(t)| мостового выпрямителя 1 в дросселе 2 нарастает ток, равный | iП(t)| , и происходит накопление энергии, которому соответствует движение изображающей точки по “верхней” ветви петли гистерезиса (фиг.2) до момента наступления равенства

х2Т·rТ·|iП(t)| =х1=y2i=KВ·|e(t)| .

С этого момента выходной сигнал дифференциального компаратора 5 принимает значение I(x12)=1, замыкающее ключи 6, 9 и одновременно размыкающее ключи 7, 10 в информационном 8 и силовом 11 переключательных каналах соответственно. Происходит переход изображающей точки на “нижнюю” ветвь петли гистерезиса, предикатная переменная x1 начинает отождествляться с предметной переменной y1i, т.е.

x1=y1i=KН·|е(t)| ,

а ток дросселя 2 и соответственно величина потребляемого тока iП(t) начинает уменьшаться под действием встречного напряжения конденсатора 3. Энергия, накопленная в дросселе 2, передается в конденсатор 3 и в нагрузку 14, а изображающая точка перемещается по “нижней” ветви петли гистерезиса (фиг.2) до момента наступления равенства

x2т·rт·|iП(t)| =х1=y1iН·|e(t)| .

С этого момента выходной сигнал дифференциального компаратора 5 вновь принимает значение I(х12)=0, ключи 6, 7 информационного переключательного канала 8 и ключи 9, 10 силового переключательного канала 11 возвращаются в исходное состояние, а изображающая точка переходит на “верхнюю” ветвь петли гистерезиса. Далее процессы повторяются.

Таким образом, перемещению изображающей точки по петле гистерезиса соответствует периодическое чередование процессов накопления энергии в дросселе 2 и последующей передачи в конденсатор 3 и нагрузку 14.

Фаза накопления энергии в дросселе 2 на каждом интервале преобразования TП(n) завершается нарастанием тока до максимального значения (фиг.3)

а фаза передачи энергии из дросселя 2 завершается уменьшением тока до значения

где UН - напряжение на конденсаторе 3 и нагрузке 14 (пульсации не учитываются); tИ(n), tП(n) - продолжительность фазы накопления энергии в дросселе 2 и фазы передачи энергии в конденсатор 3 и нагрузку 14 соответственно; γ (n)=tИ(n)/TП(n) - относительная продолжительность фазы накопления энергии в дросселе 2; L - индуктивность дросселя 2; еn - среднее значение входного напряжения на интервале преобразования TП(n), которое с достаточной для практических оценок точностью определяется соотношением

Еm - амплитуда входного напряжения.

Выбором параметров датчика входного напряжения 12 можно поддерживать различные режимы формирования квазисинусоидальной формы потребляемого тока в процессе регулирования выходного напряжения.

При КН=0 поддерживается граничный режим работы с нулевыми значениями потребляемого тока iП(n-1)=iП(n)=0 на границах каждого интервала преобразования ТП(n), в котором динамические потери в ключах 9, 10 силового переключательного канала 11 минимальны, но одновременно снижается и величина коэффициента мощности из-за существенных пульсаций потребляемого тока (фиг.3б).

При Δ K=KВН=const поддерживается режим квазипостоянного тока на каждом интервале преобразования ТП(n), обеспечивающий возможность достижения предельной величины коэффициента мощности за счет минимизации пульсаций потребляемого тока при Δ К→ 0 (фиг.3в), но ценой увеличения динамических потерь в ключах 9, 10 силового переключательного канала 11.

В граничном режиме функционирования параметры датчиков потребляемого тока 13 и входного напряжения 12 непосредственно определяют, как следует из (1), (2), максимальное значение тока

продолжительности фазы накопления энергии в дросселе 2

фазы передачи энергии в конденсатор 3 и нагрузку 14

а также продолжительность каждого интервала преобразования

Как видно из приведенных соотношений произведение

сохраняет неизменное значение, обеспечивая постоянство соотношения

и соответственно входного сопротивления R преобразователя (in - среднее значение потребляемого тока на интервале преобразования). Соотношение (3) показывает, что коммутация ключей 9, 10 силового переключательного канала 11 в процессе формирования квазисинусоидальной формы потребляемого тока осуществляется в режиме частотно-импульсной модуляции при адаптивной ширине петли гистерезиса, определяемой текущей величиной входного переменного напряжения. Последнее обстоятельство облегчает формирование синусоидальной огибающей потребляемого тока в зоне переходов входного напряжения e(t) через нулевые значения. Кратность изменения продолжительности интервалов преобразования и соответственно частоты коммутаций

определяется только уровнем выходного напряжения U*Н=UН/Em, а входное сопротивление преобразователя

только параметрами датчиков входного напряжения 12 и потребляемого тока 13.

Величину выходного напряжения UН в граничном режиме можно определить из условия энергетического баланса на интервале периода Т входного переменного напряжения. Доза энергии dW(n), которая сначала накапливается в дросселе 2, затем передается в конденсатор 3 и нагрузку 14 на одном интервале преобразования TП(n), составляет

а количество энергии, потребляемой за период входного переменного напряжения, определяется суммированием отдельных доз

При высокой частоте преобразования, когда N>>1, Т>>TП(n) и возможна замена еn на e(t), dW(n) на dW(t), суммирование эквивалентно операции интегрирования

где E - эффективное значение входного переменного напряжения.

Равное количество энергии при отсутствии потерь поступает в нагрузку 14

а величина выходного напряжения устанавливается на уровне

где хL - сопротивление дросселя 2 на частоте входного переменного напряжения. Полученное соотношение показывает возможность параметрического регулирования в широких пределах выходного напряжения путем изменения коэффициента передачи KB датчика входного напряжения 12. При этом обеспечивается линейность регулировочной характеристики и одновременно достаточно высокий уровень коэффициента мощности за счет принудительного формирования квазисинусоидальной формы потребляемого тока.

В режиме квазипостоянного тока на интервалах преобразования TП(n) соотношения (1), (2) с учетом еnen=1 при N>>1 также позволяют определить продолжительность фазы накопления энергии в дросселе 2

фазы передачи энергии из дросселя 2 в конденсатор 3 и нагрузку 14

продолжительность интервала преобразования

а также входное сопротивление преобразователя

где Δ K=KBH.

Как видно, при квазипостоянном токе на интервалах преобразования TП(n) сохраняется режим частотно-импульсной модуляции, причем диапазон изменения частоты коммутации ключей двухканального релятора 4 на интервале полупериода входного переменного напряжения также определяется соотношением (4).

Доза энергии dW(n), которая передается в конденсатор 3 и нагрузку 14 на произвольном интервале преобразования TП(n), определяется соотношением

а количество энергии, передаваемой за период входного переменного напряжения, определяется соотношением

Тогда уровень выходного напряжения, определяемый из уравнения энергетического баланса WП=WН с учетом (5), составит

Как видно, в режиме квазипостоянного тока на интервалах преобразования ТП(n) сохраняется возможность параметрического регулирования в широких пределах выходного напряжения изменением коэффициента передачи KB датчика входного напряжения 12. Поддержанием в процессе регулирования Δ K=const обеспечивается неизменность продолжительностей фазы накопления энергии в дросселе 2 (tИ=const) и интервалов преобразования ТП(n). При этом сохраняется неизменным уровень пульсаций тока на частоте преобразования и соответственно величина коэффициента мощности во всем диапазоне регулирования выходного напряжения. Кроме того, сохраняется неизменным уровень динамических потерь в ключах силового переключательного канала 11.

Таким образом, предлагаемый способ регулирования выходного напряжения обеспечивает достижение положительного эффекта, который состоит в расширении диапазона регулирования с заданной величиной коэффициента мощности за счет поддержания квазисинусоидальной формы потребляемого тока с неизменным уровнем пульсаций на частоте коммутаций ключей двухканального релятора, в том числе и в зонах перехода входного переменного напряжения через нулевые значения благодаря адаптивной ширине петли гистерезиса.

Источники информации

1. Мелешин В.И., Нечагин М.А. Проектирование однофазных выпрямителей с активной коррекцией коэффициента мощности. - Электротехника, №3, 1998, с.42-48.

2. Флоренцев С.Н. Активная коррекция коэффициента мощности преобразователей с однофазным выпрямителем на входе. - Электротехника, №3, 1992, с.28-31.

Способ регулирования выходного напряжения преобразователя переменного тока в постоянный, содержащего неуправляемый мостовой выпрямитель, сглаживающий LC-фильтр, замыкающий ключ и размыкающий двухоперационный ключ силового переключательного канала, включенные между дросселем указанного фильтра и разнополярными выводами конденсатора указанного фильтра, к которым подключена нагрузка, таким образом, что при замкнутом состоянии размыкающего двухоперационного ключа и разомкнутом состоянии замыкающего ключа под воздействием выходного напряжения неуправляемого мостового выпрямителя происходит накопление энергии в указанном дросселе, а при разомкнутом состоянии размыкающего двухоперационного ключа и замкнутом состоянии замыкающего ключа накопления в указанном дросселе энергия передается в конденсатор и нагрузку, датчик потребляемого тока и датчик входного напряжения, заключающийся в том, что осуществляют сравнение сигнала датчика потребляемого тока с опорным сигналом, формируемым датчиком входного напряжения, и в случае превышения опорным сигналом сигнала датчика потребляемого тока включают размыкающий двухоперационный ключ и выключают замыкающий ключ, а в случае превышения сигналом датчика потребляемого тока сигнала опорного напряжения выключают размыкающий двухоперационный ключ и включают замыкающий ключ, отличающийся тем, что в моменты коммутаций указанных ключей осуществляют модуляцию величины коэффициента передачи датчика входного напряжения, поддерживая высокое значение Кв указанного коэффициента при включенном, низкое значение Кн при выключенном состояниях двухоперационного ключа и сохраняя неизменной глубину модуляции ΔК=(Квн) коэффициента передачи датчика входного напряжения.



 

Похожие патенты:

Изобретение относится, в основном, к зарядке аккумуляторных батарей источников бесперебойного питания. Технический результат заключается в обеспечении улучшенного распределения энергии в аккумуляторной батарее. Для этого заявленные системы и способы реализации источника бесперебойного питания, имеющего положительную шину постоянного тока, нейтральную шину постоянного тока и отрицательную шину постоянного тока, в одном варианте осуществления включают в себя как источник бесперебойного питания схему зарядного устройства аккумуляторной батареи, имеющую катушку индуктивности, первый выход зарядного устройства и второй выход зарядного устройства. Первый переключатель, соединенный с первым выводом катушки индуктивности, сконфигурирован с возможностью соединения положительной шины постоянного тока с первым выходом зарядного устройства. Второй переключатель, соединенный со вторым выводом катушки индуктивности, сконфигурирован с возможностью соединения отрицательной шины постоянного тока с катушкой индуктивности. Нейтральная шина постоянного тока может быть соединена со вторым выходом зарядного устройства. Схема зарядного устройства для аккумуляторной батареи может быть сконфигурирована с возможностью получения энергии, по меньшей мере, от одной из положительной шины постоянного тока и отрицательной шины постоянного тока для зарядки аккумуляторной батареи, соединенной с первым выходом зарядного устройства и вторым выходом зарядного устройства. 3 н. и 21 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники и может быть использовано в (1) источнике электропитания. Технический результат - увеличение напряжения питания. Схема источника электропитания содержит: входные контакты (17, 19), предназначенные для соединения схемы (1) источника электропитания с источником (7) постоянной энергии, два выходных контакта, предназначенные для соединения схемы (11) нагрузки со схемой (1) источника электропитания, мостовую схему (3), содержащую, по меньшей мере, два последовательно соединенных переключателя ( M 1 , M 2 ), соединенные между двумя выходными контактами, резонансную схему (5), соединенную на одном конце с одним или более входными контактами и соединенную на другом конце с межсоединением (15), по меньшей мере, двух переключателей ( M 1 , M 2 ) мостовой схемы (3), и, по меньшей мере, два диода ( D 1 , D 2 ), причем первый диод ( D 1 ) соединен между первым входным контактом, обеспеченным для соединения положительного контакта источника (7) энергии и первого концевого контакта последовательно соединенных переключателей. Первый концевой контакт соединен с первым выходным контактом, второй диод ( D 2 ) соединен между вторым входным контактом, обеспеченным для соединения отрицательного контакта источника (7) энергии и второго концевого контакта последовательно соединенных переключателей, причем второй концевой контакт соединен со вторым выходным контактом. 2 н. и 9 з.п. ф-лы, 13 ил.

Изобретение относится к области электротехники и может быть использовано в источниках вторичного электропитания в качестве преобразователя постоянного напряжения в постоянное. Техническим результатом является увеличение надежности и повышение коэффициента полезного действия. Двухтактный обратноходовой преобразователь постоянного напряжения в постоянное содержит первичную обмотку первого трансформатора, конец которой соединен со стоком первого МОП-транзистора с n-каналом и с встроенным диодом, исток которого соединен с отрицательным полюсом входного напряжения, а затвор которого является входом для управляющего сигнала Uупр1; начало первичной обмотки второго трансформатора соединено с истоком второго МОП-транзистора с n-каналом и с встроенным диодом, сток которого соединен с положительным полюсом входного напряжения, а затвор является входом для управляющего сигнала Uупр2. Один вывод накопительного конденсатора соединен между концом первичной обмотки первого трансформатора и стоком первого МОП-транзистора с n-каналом и с встроенным диодом, второй вывод которого соединен между началом первичной обмотки второго трансформатора и истоком второго МОП-транзистора с n-каналом и с встроенным диодом. Начало вторичной обмотки первого трансформатора соединено с отрицательным выводом нагрузки, конец которой соединен с анодом первого выпрямительного диода, катод которого соединен с положительными выводами нагрузки, выходного конденсатора, отрицательный вывод которого соединен с отрицательным выводом нагрузки. Начало вторичной обмотки второго трансформатора соединено с отрицательным выводом нагрузки, конец которой соединен с анодом второго выпрямительного диода, катод которого соединен с положительным выводом нагрузки. 2 ил.

Изобретение относится к устройству (50a-50j) драйвера и соответствующему способу возбуждения для возбуждения нагрузки (22), в частности, блока LED. Техническим результатом является предоставление драйвера с высоким коэффициентом полезного действия, который может применяться для широких диапазонов напряжений питания и возбуждения нагрузки, в частности, блока СИД. Результат достигается тем, что устройство драйвера содержит клеммы (51, 52) ввода мощности для приема выпрямленного напряжения питания из внешнего источника питания, клеммы (53, 54) вывода мощности для выдачи напряжения и/или тока возбуждения для возбуждения нагрузки (22), полумостовой блок (70), содержащий первый (60) и второй (61) коммутационные элементы, присоединенный последовательно между узлом (57) высокого напряжения и узлом (58) низкого напряжения и имеющий узел (59) коммутации между упомянутым первым и вторым коммутационными элементами, блок (71) повышающего входного фильтра, содержащий первую катушку (L1) индуктивности, присоединенную между упомянутыми клеммами (51, 52) ввода мощности и упомянутым полумостовым блоком (70), блок (72) подпорного выходного фильтра, содержащий вторую катушку (L2) индуктивности, присоединенную между упомянутым полумостовым блоком (70) и клеммой (53, 54) вывода мощности, блок (73) накопления энергии и блок (64) управления для управления упомянутыми коммутационными элементами (60, 61). 2 н. и 12 з.п. ф-лы, 28 ил.

Изобретение относится к драйверному устройству (50a-50f) и соответствующему способу приведения в действие нагрузки (22), в частности блока LED, содержащего один или более LED (23). Техническим результатом является обеспечение драйверного устройства для приведения в действие нагрузки, в частности блока LED, содержащего один или более LED, и, в частности, для обеспечения высокого коэффициента мощности. Результат достигается тем, что предложенное драйверное устройство содержит входные выводы (51, 52) питания для приема выпрямленного напряжения (vr) питания из внешнего источника питания, выходные выводы (53, 54) питания для обеспечения напряжения и/или тока возбуждения для приведения в действие нагрузки (22), полумостовой блок (70), содержащий первый (60) и второй (61) переключающие элементы, соединенные последовательно между узлом (57) высокого напряжения и узлом (58) низкого напряжения и имеющие узел (59) переключения между упомянутыми первым и вторым переключающими элементами, блок (71) повышающе-понижающего входного фильтра, содержащий первую индуктивность (Lm) и последовательно соединенный диод (Dm), соединенный между входным выводом (51, 52) питания и упомянутым полумостовым блоком (70), блок (72) понижающего выходного фильтра, содержащий вторую индуктивность (Lo, Lc), соединенную между упомянутым полумостовым блоком (70) и выходным выводом (53, 54) питания, блок (73) накопления энергии и блок (64) управления для управления упомянутыми переключающими элементами (60, 61). 2 н. и 10 з.п. ф-лы, 18 ил.

Изобретение относится к области электротехники и может быть использовано в преобразователях понижающего и повышающего типа. Техническим результатом является повышение эффективности преобразователя в широком диапазоне входных и выходных напряжений в различных приложениях. Преобразователь (100) напряжения с отдельными схемами комбинированного преобразования включает схему (110) для понижения и повышения напряжения и блок управления (120, 200) для управления работой понижающего и повышающего преобразователя. Понижающий и повышающий преобразователь содержит схему понижения напряжения с первым набором переключателей (SW3, SW4) и схему повышения напряжения со вторым набором переключателей (SW5, SW6). Управление схемой понижения напряжения и схемой повышения напряжения можно выполнять независимо друг от друга. Блок управления выполнен с возможностью управления подачей напряжения от преобразователя напряжения на нагрузку (20) через схему понижения напряжения в режиме понижения напряжения путем управления операциями переключения первого набора переключателей и управления подачей питания от преобразователя напряжения на нагрузку через схему повышения напряжения в режиме повышения напряжения путем управления операциями переключения второго набора переключателей. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к устройству преобразования напряжения (10) для питания нагрузки (11) ШИМ сигналом через индуктивный выходной фильтр (105). Устройство преобразования напряжения (10) содержит модуль преобразования напряжения (101), питаемый входным напряжением постоянного тока (Vin), и выполнено для обеспечения множества выходных сигналов (ШИМ1, ... , ШИМn) с уровнем амплитуды, составляющим некоторую долю от уровня входного напряжения (Vin). Каждый выходной сигнал колеблется в пределах составляющей напряжения смещения, разделенной на множество уровней в диапазоне от установленной наименьшей доли уровня амплитуды до установленной наибольшей доли уровня амплитуды. Устройство преобразования напряжения (10) дополнительно содержит мультиплексор (103), принимающий в качестве множества входов указанное множество выходных сигналов (ШИМ1, ... , ШИМn). Мультиплексор выполнен для вывода одного выходного сигнала (ШИМx), выбранного из множества входов, при этом выходной сигнал (ШИМx) мультиплексора (103) подключается к выходному фильтру (105). 4 н. и 7 з.п. ф-лы, 7 ил.

Изобретение относится к области электротехники и может быть использовано в многофазных импульсных преобразователях питания. Техническим результатом является снижение потерь энергии и улучшение качества напряжения. В способе управления N-фазным импульсным преобразователем постоянного напряжения, состоящем в формировании и подаче на параллельно включенные N силовых блоков импульсов управления, изменяемых по скважности в зависимости от требуемой величины выходного напряжения и сдвинутых друг от друга на время равное 1/Nf, где f - частота этих импульсов (Гц), и в контроле состояния силовых фазных блоков при обнаружении отказов m силовых блоков взаимный сдвиг импульсов устанавливают равным 1/(N-m)f. 3 ил.
Наверх