Способ извлечения золота и серебра из полиметаллического сырья

Изобретение относится к гидрометаллургии благородных металлов, в частности к способам извлечения золота и серебра из различных видов полиметаллического сырья, в состав которого могут входить медь, никель, олово, свинец, нержавеющая сталь и другие металлы. Технический результат - селективное извлечение золота и серебра из токопроводящих материалов, обеспечивающий высокие скорости растворения драгоценных металлов. Способ заключается в обработке материала, помещенного в анодную камеру электролизера и являющегося анодом, кислым раствором тиомочевины (25-100 г/л, рН 0,5-2,0), пропускании постоянного электрического тока и проведении электролиза при температуре 20-35°С в потенциостатическом режиме при потенциале анода +0,380 ÷ +0,420 В относительно нормального водородного электрода. Скорость растворения золота достигает 0,43 мг/см2·мин, серебра - 0,37 мг/см2·мин. Степень извлечения золота составляет 99,9%, серебра - 99,6%.

 

Изобретение относится к гидрометаллургии благородных металлов, в частности к способам извлечения золота и серебра из различных видов полиметаллического сырья (лом радиоэлектронной и вычислительной техники, отходы ювелирной промышленности, концентраты технологических переделов), в состав которого могут входить такие металлы, как медь, никель, олово, свинец, цинк, кадмий, нержавеющая сталь и др.

Известен способ извлечения золота и серебра из концентратов, вторичного сырья и других дисперсных материалов, включающий обработку растворами комплексообразующих солей при пропускании электрического тока, причем в качестве растворов используют растворы, содержащие 10-200 г/дм3 тиоцианат-ионов, 0,1-5,0 г/дм3 ионов железа /III/, рН 0,5-4,0, выщелачивание проводят в анодном пространстве, выделение золота и серебра проводят при плотности тока 0,1-10 А/дм2 на катоде, отделенном от анодного пространства фильтрующей перегородкой, после извлечения золота и серебра раствор возвращают в процесс (Заявка на изобретение РФ 94005910 А1 МКИ С 25 1/20, С 22 В 7/00 от 22.02.94).

Недостатками способа являются низкая скорость процесса, образование высокотоксичных цианат-ионов в электролите, а также дополнительный расход электроэнергии на реакции восстановления железа /III/ до железа /II/ на катоде и окисления железа /II/ до железа /III/ на аноде.

Наиболее близким к предлагаемому решению является способ извлечения золота и серебра из отходов, включающий электрохимическое растворение золота и серебра в водном растворе при температуре 10-70°С в присутствии комплексообразователя этилендиаминтетраацетата натрия, растворение ведут при рН 7-14 и плотности постоянного тока 0,2 - 10 А/дм2 (Патент РФ 2194801 С1 от 06.08.2001).

Недостатком способа является невысокая скорость растворения серебра (0,14 мг/см2·мин) и особенно золота (0,09 мг/см2·мин).

Технический результат заключается в селективном извлечении золота и серебра с высокой скоростью растворения.

Технический результат достигается способом извлечения золота и серебра из полиметаллического сырья, включающим электрохимическое растворение золота и серебра в водном растворе при температуре 20-35°С в присутствии комплексообразователя, согласно изобретению, в качестве комплексообразователя используют тиомочевину при ее концентрации 25-100 г/л, растворение ведут при рН раствора 0,5-2,0 в потенциостатическом режиме при потенциале анода +0,380 - +0,420 В.

Сущность способа извлечения золота и серебра из различных видов полиметаллического сырья, содержащего цветные, редкие и черные металлы заключается в обработке материала, помещенного в анодную камеру электролизера и являющегося анодом, кислым раствором комплексообразователя - тиомочевины, пропускании постоянного электрического тока и проведении электролиза в потенциостатическом режиме при потенциале анода +0,380 ÷ +0,420 В относительно нормального водородного электрода. На аноде происходит растворение золота и серебра за счет их электроокисления и образования тиомочевинных комплексов, на катоде - разряд этих комплексов и осаждение металлов. Выщелачивание проводят при температуре 20-35°С раствором, содержащим 25-100 г/л тиомочевины, при рН раствора 0,5 - 2,0. Скорость растворения золота достигает 0,43 мг/см2·мин, серебра - 0,37 мг/см2·мин. Степень извлечения золота составляет 99,9%, серебра - 99,6%. Уменьшение потенциала анода ниже +0,380 В, температуры менее 20°С и концентрации тиомочевины менее 25 г/л приводит к снижению скорости растворения металлов. При значениях потенциала анода и температуры выше заявленных величин начинаются процессы разрушения тиомочевины вследствие электроокисления или термического разложения, что приводит к дополнительному ее расходу. Увеличение концентрации тиомочевины в растворе более 100 г/л нецелесообразно, т.к. не улучшает показатели процесса. Интервал значений рН раствора (0,5-2,0) обеспечивают устойчивость тиомочевины и высокую электропроводность электролита. Медь, олово и некоторые другие металлы, входящие в состав перерабатываемых продуктов, могут также незначительно растворяться и переходить в электролит, но, имея более отрицательные значения потенциалов разложения тиокарбамидных комплексов по сравнению с комплексами золота и серебра и потенциалом выделения водорода, они практически не выделяются на катоде.

После окончания процесса осадок золота и серебра отделяется от катода; раствор фильтруется и возвращается в процесс; отработанный материал извлекается из электролизера и направляется в отвал или на дальнейшую переработку.

Пример 1. В электролизер объемом 200 мл с объемом электролита 150 мл, содержащим 25 г/л тиомочевины, рН раствора - 1,0, температура - 30°С, помещают медную пластину с золотым покрытием (содержание золота - 2,5 мас.%). Катод - нержавеющая сталь. Потенциал анода в процессе электролиза - +0,38 В. Время электролиза - 30 мин. Степень извлечения золота составляет 99,0%, при этом скорость растворения золота 0,35 мг/см2·мин.

Пример 2. В электролизер объемом 200 мл с объемом электролита 150 мл, содержащим 65 г/л тиомочевины, рН раствора - 2,0, температура - 35°С, помещают медную пластину с золотым покрытием (содержание золота - 2,5 мас.%). Катод - нержавеющая сталь. Потенциал анода в процессе электролиза - +0,40 В. Время электролиза - 20 мин. Степень извлечения золота составляет 99,9%, при этом скорость растворения золота - 0,43 мг/см2·мин.

Пример 3. В электролизер объемом 200 мл с объемом электролита 150 мл, содержащим 100 г/л тиомочевины, рН раствора - 0,5, температура - 20°С, помещают металлические разъемы (электронный скрап) на основе меди с золотым покрытием и подслоем из серебра состава, мас.%: Cu - 84,2; Sn - 8,9; Au - 3,8; Ag - 3,1. Катод - нержавеющая сталь. Потенциал анода в процессе электролиза - 0,42 В. Время электролиза - 35 мин. Степень извлечения золота составляет 99,7%, серебра - 99,6%; при этом скорость растворения золота составляет 0,41 мг/см2·мин, скорость растворения серебра - 0,37 мг/см2·мин.

Таким образом, по сравнению с прототипом предлагаемый способ позволяет:

1) повысить скорость растворения золота более чем в 4 раза и серебра более чем в 2,5 раза;

2) снизить время технологического процесса растворения золота и серебра.

Способ извлечения золота и серебра из полиметаллического сырья, включающий электрохимическое растворение золота и серебра в водном растворе при температуре 20-35°С в присутствии комплексообразователя, отличающийся тем, что в качестве комплексообразователя используют тиомочевину при ее концентрации 25-100 г/л, растворение ведут при рН раствора 0,5-2,0 в потенциостатическом режиме при потенциале анода от +0,380 до +0,420 В.



 

Похожие патенты:

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам переработки материалов, содержащих благородные и цветные металлы, а также их халькогениды, и может быть использовано при переработке концентратов платиновых металлов.

Изобретение относится к порошковой металлургии, в частности к получению порошка серебра из водного раствора электролита. .

Изобретение относится к области гидрометаллургии благородных металлов, в частности к извлечению золота из цианидных растворов. .

Изобретение относится к области переработки жидких радиоактивных отходов, в частности, к способам извлечения из них благородных металлов. .

Изобретение относится к устройствам для электрохимической обработки растворов и может быть использовано для электролитического извлечения металлов или проведения окислительно-восстановительных процессов.
Изобретение относится к области гидрометаллургии, а именно к извлечению путем электролиза металлов платиновой группы из анодных шламов, образующихся при электрорафинировании меди и никеля.
Изобретение относится к области металлургии, а именно к извлечению благородных металлов и металлов платиновой группы из бедных и ультрабедных промышленных отходов.
Изобретение относится к получению порошка серебра. .

Изобретение относится к гидрометаллургии и может быть использовано для электрохимического извлечения металлического родия из растворов родия в соляной кислоте, содержащих примеси.

Изобретение относится к способам электролитического извлечения золота из вторичного сырья, в том числе с поверхности сплавов на основе бериллия. .
Изобретение относится к цветной металлургии, в частности к технологии обеднения конверторных шлаков. .
Изобретение относится к цветной металлургии, а именно к переработке твердых солевых отходов, получаемых при производстве магния электролизом хлормагниевого сырья, на товарные продукты, в частности к получению минеральных удобрений.

Изобретение относится к области металлургии и, в частности, к применяемым в цветной металлургии гидрохимическим способам комплексной переработки многокомпонентных, полиметаллических отходов с извлечением ценных компонентов и получением различных товарных продуктов.

Изобретение относится к переработке техногенного сырья производства цветных металлов и может быть использовано для извлечения цветных металлов из отходов производства, а именно из кислотоупорной футеровки электролизных ванн производства меди.
Изобретение относится к области металлургии вторичных цветных металлов, в частности к способам извлечения серебра из отходов - отработанных катализаторов и зол. .

Изобретение относится к переработке стружки титановых сплавов металлургических и металлообрабатывающих производств. .
Изобретение относится к гидрохимии алюминия и галлия и может быть использовано для получения галлия. .
Изобретение относится к гидрометаллургии благородных металлов, в частности к прямым способам извлечения палладия из отходов электронной, химической, электрохимической и ювелирной промышленности.
Изобретение относится к области металлургии и может быть использовано в химико-металлургических предприятиях при комплексной переработке отходов производства, в частности для избирательного извлечения железа и марганца из отходов производства.

Изобретение относится к области металлургии. .
Изобретение относится к области металлургии вторичных цветных металлов, в частности к способам извлечения серебра из отходов - отработанных катализаторов и зол. .
Наверх