Способ получения длинномерных композиционных проводов на основе высокотемпературных сверхпроводящих соединений

Изобретение относится к области электротехники, в частности к технологии получения длинномерных проводов на основе сверхпроводящих соединений. Способ включает формирование моножильной заготовки путем засыпки порошка висмутовой керамики в серебряную оболочку, деформацию полученной моножильной заготовки до требуемых размеров волочением без нагрева со степенью деформации за проход 0,5-20%, резку деформированной заготовки на мерные части, сборку многожильной заготовки путем размещения требуемого количества мерных частей деформированной моножильной заготовки в серебряной оболочке многожильной заготовки, экструзию многожильной заготовки при температуре в диапазоне 100-200°С и с величиной коэффициента вытяжки от 4 до 30, прокатку на воздухе без нагрева со степенью деформации за проход 1-50%, термомеханическую обработку, включающую несколько стадий термообработки при температуре 830-860°С и в течение времени, обеспечивающего формирование в керамической сердцевине фазы требуемого состава и структуры, с промежуточными деформациями между стадиями термообработки со степенью деформации за проход 5-30%. Техническим результатом изобретения является увеличение критической плотности тока за счет последовательного уплотнения керамической сердцевины и упрощение способа изготовления.

 

Изобретение относится к области технической сверхпроводимости, в частности к технологии получения длинномерных композиционных многожильных проводов на основе высокотемпературных сверхпроводящих (ВТСП) соединений, предназначенных для создания электротехнических изделий.

Известно, что многожильные провода на основе ВТСП соединений получают методом "порошок в трубе", включающим засыпку керамического порошка в металлическую оболочку, деформацию полученной моножильной заготовки до требуемого размера, ее резку на мерные части, сборку многожильной заготовки путем размещения в металлической оболочке требуемого количества этих мерных частей, деформацию многожильной заготовки и термообработку в несколько стадий с промежуточными деформациями между ними (термомеханическую обработку) /1/. В случае засыпки в металлическую оболочку, например керамических порошков, деформация проводится с целью получения требуемого размера провода и максимально возможного уплотнения сердцевины перед термомеханической обработкой (ТМО), которую проводят с целью формирования в керамической сердцевине сверхпроводящей фазы требуемого состава и структуры. При использовании керамических порошков деформацию проводят волочением и прокаткой, которые не позволяют достигнуть требуемой плотности керамической сердцевины.

Также известны способы получения проводов на основе ВТСП-соединений методом "порошок в трубе" на основе металлических порошков, однако при использовании металлических порошков получить провод с плотностью критического тока выше 500 А/см2 затруднительно /2/.

Наиболее близким к предлагаемому техническому решению является способ получения многожильного проводника /3/ - прототип, включающий получение моножильной заготовки путем засыпки металлического порошка в серебряную оболочку, экструзию полученной моножильной заготовки до требуемых размеров при 300-600°С и величине коэффициента вытяжки до 800, резку деформированной заготовки на мерные части, сборку многожильной заготовки путем размещения в серебряной оболочке многожильной заготовки требуемого количества мерных частей деформированной моножильной заготовки, экструзию многожильной заготовки при 300-600°С и величине коэффициента вытяжки до 800, прокатку при 300-600°С в контролируемой атмосфере (аргон), окисление, термомеханическую обработку.

В процессе деформации экструзией происходит максимально возможное при используемых в настоящее время основных методах деформации (волочение, прокатка, экструзия) уплотнение сердцевины моно- и многожильной заготовок, однако в случае использования металлических порошков после деформаций проводят окисление (переводят металлы в оксиды), при котором происходит разуплотнение сердцевины, и ТМО (сверхпроводящую фазу требуемого состава и структуры формируют уже в керамической, состоящей из оксидов сердцевине).

Данный способ обладает рядом существенных недостатков:

- использование металлических порошков требует введения перед ТМО операции окисления этих порошков, а это значительно усложняет процесс (вводится дополнительная операция в контролируемой атмосфере - окисление сердцевины кислородом, диффундирующим через оболочку проводника, при котором происходит разуплотнение сердцевины); кроме того, вероятны трудности по получению в сердцевине стехиометричного сверхпроводящего соединения, а при ТМО - дополнительные трудности по получению требуемой структуры сердцевины, что приводит к значительному снижению плотности критического тока;

- проведение экструзии при высокой температуре (300-600°С) с большими коэффициентами вытяжки - до 800 значительно усложняет процесс; экструзия может проходить при вертикальном и горизонтальном расположении заготовки и полученного провода, в обоих случаях при экструзии заготовок большого диаметра с большими коэффициентами вытяжки необходимо предусмотреть оснастку для приема провода с большими скоростями, которые определяются скоростями движения пресс-оборудования;

- проведение теплой прокатки при высокой температуре (300-600°С) в контролируемой атмосфере (аргон) также усложняет процесс и снижает его безопасность.

Технической задачей изобретения является увеличение критической плотности тока за счет последовательного (от операции к операции) уплотнения керамической сердцевины и упрощение способа.

Поставленная задача решается тем, что в способе-прототипе, включающем засыпку порошка в серебряную оболочку моножильной заготовки, деформацию полученной моножильной заготовки до требуемых размеров, резку деформированной заготовки на мерные части, сборку многожильной заготовки, путем размещения требуемого количества мерных частей деформированной моножильной заготовки в серебряной оболочке многожильной заготовки, экструзию, прокатку и ТМО, предлагается следующее: в оболочку моножильной заготовки засыпают порошок висмутовой керамики, деформируют моножильную заготовку волочением при комнатной температуре, то есть без нагрева, со степенью деформации за проход 0,5-20%, экструзию многожильной заготовки проводят при температуре в диапазоне 100-200°С и с величиной коэффициента вытяжки от 4 до 30, прокатку проводят при комнатной температуре на воздухе со степенью деформации за проход 1-50%, после чего проводят термомеханическую обработку, включающую несколько стадий термообработки при температуре 830-860°С, в течение времени, обеспечивающего формирование в керамической сердцевине сверхпроводящей фазы требуемого состава и структуры, с промежуточными деформациями между стадиями термообработки со степенью деформации за проход 5-30%.

В процессе перечисленных операций происходит последовательное уплотнение многожильного длинномерного провода, что обеспечивает увеличение критического тока.

Засыпка керамического порошка в оболочку позволяет получить в сердцевине провода близкий к сверхпроводящему по химическому составу материал уже на начальном этапе получения провода. В процессе деформаций и термообработок происходит постепенное уплотнение керамической сердцевины. В случае использования металлических порошков в сердцевине происходят аналогичные процессы, однако при окислении, проводимом с целью получения в сердцевине провода материала, близкого к сверхпроводящему по химическому составу, происходит значительное разуплотнение сердцевины (очевидное при прохождении кислорода в сердцевину через оболочку провода толщиной 0,4-0,5 мм). После окисления уплотнение уже керамической сердцевины происходит только при ТМО, которая включает в себя, как правило, только несколько (2-3 и максимально до 4) промежуточных деформаций, что недостаточно для требуемого уплотнения керамической сердцевины, а увеличение количества промежуточных деформаций при ТМО нецелесообразно в связи с нарушением структуры, текстуры керамической сердцевины и геометрии провода. Это является одной из основных причин малых критических токов проводов на основе металлических порошков.

Деформация полученной на предыдущем этапе моножильной заготовки волочением при комнатной температуре со степенью деформации за проход 0,5-20% обеспечивает получение моножильного провода с уплотненной керамической сердцевиной требуемой формы и размеров, что значительно упрощает процесс, делает его более стабильным (отсутствие значительного градиента температур) и безопасным.

Деформация многожильной заготовки экструзией при температуре 100-200°С и величине коэффициента вытяжки 4-30 значительно упрощает процесс, делает его стабильным (значительно уменьшается градиент температур), безопасным и обеспечивает получение многожильного длинномерного провода с керамической сердцевиной, близкой по химическому составу к сверхпроводящему материалу, требуемой формы и размеров. Кроме того, при деформации многожильной заготовки экструзией также происходит дальнейшее уплотнение керамической сердцевины.

При уменьшении величины коэффициента вытяжки с 800 до 4-30 резко снижается вероятность нарушения геометрии жил, что благоприятно сказывается впоследствии на увеличении критического тока.

Прокатка без нагрева на воздухе и при степени деформации за проход 1-50% обеспечивает получение провода требуемой формы и размеров, в основном по толщине, с требуемой геометрией сердцевины и значительно упрощает процесс по сравнению с прокаткой при температуре 300-600°С в контролируемой атмосфере. Кроме того, при прокатке происходит дальнейшее уплотнение сердцевины.

ТМО, включающая несколько стадий термообработки при температуре 830-860°С с промежуточными деформациями между ними со степенью деформации за проход 5-30%, обеспечивает дальнейшее уплотнение сердцевины и формирование в ней сверхпроводящей фазы требуемого состава и структуры, что позволяет получить сверхпроводящий провод с высокими токонесущими характеристиками.

При деформации моножильной заготовки волочением со степенью деформации за проход менее 0,5% происходит нарушение геометрических размеров провода, появляется волнообразность по длине провода, а при волочении со степенью деформации за проход более 20% происходит нарушение целостности оболочки, проявляющееся в образовании мелких трещин и их росте вплоть до полного разрушения оболочки, что приводит к разрыву провода.

Проведение экструзии при температуре ниже 100°С при получении провода из моножильной и многожильной заготовок в серебряных оболочках приводит к растрескиванию заготовки вплоть до нарушения целостности керамических жил из-за уменьшения пластичности материала оболочки.

При увеличении температуры экструзии выше 200°С при получении провода из моножильной и многожильной заготовок в серебряных оболочках происходит нарушение геометрии керамических жил из-за уменьшения прочностных характеристик материала оболочки - происходит утонение керамических жил в одних местах по длине жилы и утолщение керамических жил в других местах по длине жилы.

Проведение экструзии при величине коэффициента вытяжки меньше 4 нецелесообразно из-за необходимости увеличения циклов экструзии и, следовательно, увеличения общего времени деформации многожильной заготовки до требуемого размера. Проведение экструзии при величине коэффициента вытяжки более 30 приводит к нарушению геометрии керамических жил, связанной с различием в механических свойствах экструдируемых материалов, которое оказывает существенное влияние на деформирование материалов при больших степенях деформации.

Проведение прокатки с нагревом, то есть при температуре выше комнатной нецелесообразно, так как деформации подвергается материал с керамической сердцевиной, находящейся на этой стадии в виде порошка (в прототипе - сердцевина металлическая). Кроме того, с одной стороны, при используемых степенях деформации за проход (1-50%) нет необходимости проводить деформацию с нагревом с целью увеличения пластичности прокатываемых материалов (как в способе-прототипе), с другой стороны, повышение температуры прокатки может привести к увеличению пластичности только оболочки и нарушению геометрии керамических жил из-за уменьшения прочностных характеристик материала оболочки, это может привести к утонению керамических жил в одних местах по длине жилы и утолщению керамических жил в других местах по длине жилы, что всегда приводит к уменьшению критического тока.

При прокатке со степенью деформации за проход менее 1% происходит нарушение геометрических размеров провода, появляется волнообразность по длине провода, а при прокатке со степенью деформации за проход более 50% происходит разрыв оболочки: от мелких трещин до ее полного разрушения, что приводит к разрыву провода.

Проведение ТМО при температуре ниже 830°С и выше 860°С и степени деформации за проход менее 5% и более 30% не позволяет сформировать в керамической сердцевине сверхпроводящую фазу требуемого состава и структуры, в частности при степени деформации за проход менее 5% на промежуточных деформациях не происходит укладка кристаллитов в требуемом направлении - направлении преимущественного протекания тока, а при степени деформации за проход более 30% происходит нарушение геометрии керамической сердцевины. При уменьшении температуры ТМО ниже 830°С не происходит формирования сверхпроводящей фазы в керамической сердцевине. При увеличении температуры ТМО выше 860°С происходит образование большого количества жидкой фазы, которая вытекает из оболочки (например, через поры и микротрещины), что приводит к нарушению целостности оболочки, нарушению стехиометрии керамической сердцевины и резкому ухудшению критических характеристик сверхпроводника.

Проведение данных операций в описанной последовательности и при указанных режимах привело к получению нового технического результата: увеличению критической плотности тока за счет последовательного уплотнения керамической сердцевины и упрощению способа.

Пример осуществления. Металлические серебряные ампулы (трубы длиной 1000 мм, диаметром 10 мм, с толщиной стенки 1 мм - оболочки моножильных заготовок) заполняли порошком висмутовой керамики из расчета конечного коэффициента заполнения моножильного провода 25%. Далее полученные моножильные заготовки деформировали волочением при комнатной температуре со степенью деформации за проход 10%, после чего формировали многожильные заготовки путем размещения в серебряных оболочках многожильных заготовок мерных частей деформированных моножильных заготовок. В качестве оболочек многожильных заготовок использовали серебряные трубы (диаметром 10 мм и диаметром 16 мм с толщиной стенки 1 мм, длиной 100 и 50 мм соответственно). В оболочку многожильной заготовки диаметром 16 мм помещали 217 мерных частей деформированных моножильных заготовок в серебряной оболочке диаметром 0,82 мм, в серебряные оболочки многожильных заготовок диаметром 10 мм помещали в каждую по 7 мерных частей деформированных моножильных заготовок в серебряной оболочке диаметром 2,6 мм. Далее все полученные многожильные заготовки подвергали экструзии с величиной коэффициента вытяжки 7 и 25 при температурах 100 и 200°С. Затем все полученные после экструзии материалы прокатывали без нагрева на воздухе со степенью деформации за проход 15%. После чего на всех полученных проводах проводили ТМО в две стадии при температурах 830°С и 840°С в течение общего времени 200 часов с промежуточной прокаткой со степенью деформации за проход 12% до конечной толщины проводов на основе Bi-2223:0,2-0,3 мм.

Критический ток в проводах измеряли стандартным четырехточечным методом по критерию 1 мкВ/см.

На всех полученных по предлагаемому способу проводах величина плотности критического тока (критический ток, отнесенный к площади сверхпроводящей сердцевины) не менее чем в 9,5 раз выше, чем на лучших проводах, полученных с использованием металлического порошка, и не менее чем на 5% выше, чем на проводах, полученных на основе керамических порошков без использования экструзии, что характеризует преимущество предлагаемого способа.

Источники информации

1. P.Haldar, L.Motovidlo. Processing High Critical Current Density Bi-2223 Wires and Tapes. The Journal of The Minerals and Materials Society (JOM), Vol.44, No.10, October 1992, p.54-58.

2. W.Gao, S.-C.Li et al. Synthesis of Bi-Pb-Sr-Ca-Cu Oxide/Silver Superconducting microcomposites by Oxidation of Metallic Precursors, Physica C 161 (1989), 71-75.

3. C.L.H.Thieme, D.Daly et.al. High Strain Warm Extrusion and Warm Rolling of Multiflamentary Bi-2223 Metallic Precursor Wire. Advances in Cryogenic Engineering(Materials), Vol.44 Edited by Balachandran et al., Plenum Press, New York, 1998, pp.533-540 - прототип.

Способ получения длинномерных композиционных проводов на основе высокотемпературных сверхпроводящих соединений, включающий формирование моножильной заготовки путем засыпки порошка в серебряную оболочку, деформацию полученной моножильной заготовки до требуемых размеров, резку деформированной заготовки на мерные части, сборку многожильной заготовки путем размещения требуемого количества мерных частей деформированной моножильной заготовки в серебряной оболочке многожильной заготовки, экструзию, прокатку и термомеханическую обработку, отличающийся тем, что в оболочку моножильной заготовки засыпают порошок висмутовой керамики, деформацию моножильной заготовки проводят волочением без нагрева со степенью деформации за проход 0,5-20%, экструзию многожильной заготовки проводят при температуре в диапазоне 100-200°С и с величиной коэффициента вытяжки от 4 до 30, прокатку проводят без нагрева на воздухе со степенью деформации за проход 1-50%, термомеханическую обработку, включающую несколько стадий термообработки, проводят при температуре 830-860°С в течение времени, обеспечивающего формирование в керамической сердцевине фазы требуемого состава и структуры, с промежуточными деформациями между стадиями термообработки со степенью деформации за проход 5-30%.



 

Похожие патенты:

Изобретение относится к одной из отраслей электротехнической промышленности - кабельной технике, более конкретно к электрическим кабелям для систем сигнализации, управления, передачи и обработки данных.

Изобретение относится к области производства электропроводящих материалов, получаемых путем нанесения на бумажную основу электропроводящего покрытия и предназначенных для экранирования бумажно-пропитанной изоляции и электропроводящих жил силовых кабелей.
Изобретение относится к электротехнике, в частности к способам сушки кабельной изоляции, и может найти применение при эксплуатации кабельных линий связи. .

Изобретение относится к области кабельной техники и может быть использовано для изготовления кабелей с пластмассовой изоляцией и секторной формой токопроводящих жил (ТПЖ).

Изобретение относится к электротехнической промышленности и может быть использовано в различных отраслях промышленности, где необходимо применение электрических проводов, т.е.

Изобретение относится к ручным инструментам и может быть применено в электротехнической, кабельной, нефтяной отрасли, а также в жилищно-коммунальном хозяйстве для ремонтных нужд.

Изобретение относится к ручным инструментам и может быть применено в электротехнической, кабельной, нефтяной отрасли, а также в жилищно-коммунальном хозяйстве для ремонтных нужд.

Изобретение относится к области электротехники, в частности к композициям на основе этиленпропиленового каучука, используемым в качестве междужильного заполнителя в электрических кабелях и проводах.

Изобретение относится к технологии изготовления универсальных (многофункциональных) электрических кабелей для нефтедобычи, которые используются в комплекте с оборудованием нефтяных и водяных скважин для питания электродвигателей погружных насосов, для путевого электропрогрева высоковязкой нефтегазовой смеси в скважине, для предотвращения образования и ликвидации парафиногидратных пробок в скважине, для путевого электропрогрева трубопроводов, а также в качестве грузонесущего кабеля.
Изобретение относится к электротехнике, в частности к способу получения сверхпроводников в виде композиционных широких лент и листов с различным числом слоев и жил в слое из высокотемпературных сверхпроводящих (ВТСП) соединений, предназначенных для создания электротехнических изделий.
Изобретение относится к области электротехники, в частности к сверхпроводимости, и может быть использовано для усовершенствования технологий получения сверхпроводящих проводников.

Изобретение относится к получению сверхпроводящих материалов и может быть использовано в электротехнической промышленности и других отраслях науки и техники при изготовлении сверхпроводящих магнитных систем различного назначения.

Изобретение относится к технике, а именно к материалам с высокой проводимостью, способам их обработки. .
Изобретение относится к области электротехники, в частности к технологии получения выскотемпературных сверхпроводящих изделий. .

Изобретение относится к электротехнике и может быть использовано в производстве обмоток высокопольных импульсных магнитов, а также для тяжелонагруженных линий электропередач.
Изобретение относится к электротехнике, в частности к способу получения сверхпроводников в виде композиционных широких лент и листов с различным числом слоев и жил в слое из высокотемпературных сверхпроводящих (ВТСП) соединений, предназначенных для создания электротехнических изделий.

Изобретение относится к электротехнической промышленности, к способу изготовления сверхпроводящей проволоки конечной длины, предусматривающему по меньшей мере ввод исходного сверхпроводящего материала в металлическую трубку, укладывание или свертывание металлической трубки с соприкосновением наружных поверхностей различных частей трубки и нагрев металлической трубки, заполненной исходным сверхпроводящим материалом, до температуры, близкой к точке плавления металлической трубки, для того, чтобы сформировать в исходном материале сверхпроводящую фазу.

Изобретение относится к области электротехники и может быть использовано в устройствах, преимущественно предназначенных для работы в магнитных полях выше 10 Тл при высоких плотностях тока и низких гистерезисных потерях.

Изобретение относится к получению высокотемпературных сверхпроводников, в частности к получению высокотемпературных сверхпроводников из широко распространенных материалов с доступной технологией изготовления.

Изобретение относится к получению высокотемпературных сверхпроводников, в частности к получению высокотемпературных сверхпроводников из широко распространенных материалов с доступной технологией изготовления.

Изобретение относится к области прикладной сверхпроводимости и может быть использовано для изготовления сверхпроводников при сильно механически нагруженных сверхпроводящих обмоток (с напряжением проводника больше 100 МПа при работе), а также для сверхпроводящих обмоток и устройств, работающих в переменных режимах, например сверхпроводящих индуктивных накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц
Наверх