Агент для травления, содержащий мочевину, и способ его получения

Изобретение относится к области химической обработки металлов и может быть использовано для удаления оксидного слоя на нержавеющей стали после термической обработки, такой как сварка. Травильный агент включает азотную кислоту в количестве от 15 до 30 мас.% и наполнитель, причем наполнитель представляет собой порошкообразный неорганический загуститель в количестве от 2 до 30 мас.%, остальную часть травильного агента составляет вода, а травильный агент представляет собой пасту для травления или гель для травления, которые следует наносить на поверхность термообработанной нержавеющей стали, или же травильную жидкость, которую следует распылять по стали, при этом травильный агент также включает мочевину, по меньшей мере 0,5 г/л, но не более 200 г/л, для пониженного образования азотистых паров при использовании этого травильного агента и является стабильным в течение длительного времени при хранении при комнатной температуре. Способ изготовления травильного агента, включающий добавление мочевины, когда азотная кислота или кислоты и наполнитель имеют температуру ниже 30°С, предпочтительно ниже 25°С, предпочтительно на конечной стадии изготовления, когда азотная кислота или кислоты и наполнитель уже охладились. Технический результат: повышение эффективности, простоты в использовании и стабильности при хранении и транспортировке травильного агента. 2 н. и 8 з.п. ф-лы, 4 ил. 4 табл.

 

Данное изобретение относится к стабильному в течение длительного времени, содержащему наполнители травильному агенту для удаления оксидного слоя на нержавеющей стали после термической обработки, такой как сварка, причем этот травильный агент включает азотную кислоту. Такие травильные агенты в виде паст/гелей или распыляемых жидкостей применяют в обрабатывающей промышленности (например, при механической обработке) для удаления оксидного слоя на стали после сварки и т.д. или же для общей очистки стали после ее обработки.

При термической обработке нержавеющей стали, такой как сварка, на поверхности стали и вокруг термообработанной области, а также на самом сварном шве, образуется оксидный слой, состоящий в основном из Cr2О3, FeO, SiO2 и MnO. Указанный слой должен быть удален, чтобы нержавеющая сталь получила желаемые поверхностные свойства, включая нормальный пассивированный слой с соответственным содержанием хрома. Такого удаления обычно достигают путем обработки очищенным травильным агентом, таким как травильная паста или травильный гель, которые наносят на поверхность стали в области сварных швов, или же травильной жидкостью, которую распыляют, обычно на более значительной поверхности, чтобы получить более обширную очистку после обработки стали. Эта паста/жидкость содержит наполнитель для увеличения вязкости агента и, следовательно, улучшения его прилипания к поверхности стали и снижения риска разбрызгивания. После действия травильного агента в течение некоторого времени, обычно около одного часа, его смывают водой.

Современные травильные агенты часто основаны на так называемой нитрующей смеси, то есть смеси азотной кислоты (HNO3) и фтористо-водородной кислоты (HF). Травление нитрующей смесью дает хорошие результаты травления и к тому же является экономным, но приводит к проблемам в отношении окружающей среды, которые трудно разрешить и которые возникают при окислении металла азотной кислотой, поскольку в атмосферу и воду выделяются азотистые пары (NOx) и нитраты. После принятия недавних требований по охране труда и законов, относящихся к выбросам в атмосферу и к сточным водам обрабатывающей промышленности, были разработаны новые способы травления. Альтернативой, которая недавно появилась на рынке, является так называемое травление без нитратов; при этом азотную кислоту замещают другим химическим окислителем. Вместо HNO3 используют, например, Fe3+, пероксид водорода (Н2O2) и H2SO4, которые дают хороший эффект травления, но все же не такой хороший, как азотная кислота. Однако в случае применения альтернативных окислителей избегают выделения NOx и нитратов.

Что касается гелей, паст и распыляемых жидкостей для травления, то здесь имеется проблема, которая заключается в том, чтобы найти окислитель, который является достаточно эффективным, легким в обращении и в то же время стабильным в течение продолжительного времени. Многие из травильных агентов, не содержащих нитратов, являются, например, очень сложными в обращении, принимая во внимание, что пользователь часто не является специалистом в данной области; часто речь идет о маленьких механических мастерских, где используют травильные агенты. Стабильность важна, поскольку травильные агенты являются хранящимся товаром, который может храниться в течение длительного времени перед использованием.

Тип травильного агента, который является целью данного изобретения, должен выдерживать хранение в нескольких звеньях торговой цепи, выдерживать транспортировку по всему миру и хранение заказчиком. Известным, но менее эффективным агентом для снижения количества NOx в связи с травильными агентами обсуждаемого типа является перманганат калия. Однако травильный агент с добавлением перманганата калия является очень нестабильным и, следовательно, такой агент продается в настоящее время во всем мире в виде двухкомпонентного агента. В соответствии с международными законами безопасности, однако, является недопустимым совместная погрузка перманганата калия и травильных агентов, когда они должны перевозиться, что является очень большим недостатком и большой проблемой в торговле. Кроме того, когда такой агент должен быть использован, перманганат калия следует смешивать с травильным агентом непосредственно перед использованием, а затем вся порция должна быть использована в течение 24 часов.

Что касается непрерывных травильных ванн с нитрующей смесью, которые применяют для травления непрерывных стальных полос при их изготовлении, то обычно сталь пропускают через травильную ванну для удаления оксидного слоя, который образовался, например, при такой обработке как холодная прокатка, горячая прокатка и отжиг; проводились испытания с добавлением мочевины в травильную ванну для снижения образования азотистых паров и нитратов. Однако при нейтрализации остаточных продуктов травления с использованием мочевины возникали некоторые сложности, например образование аммиака (NH3). Кроме того, имеется риск образования в травильных ваннах нитрата аммония (NH4NO3), причем этот нитрат, возможно, отлагается в вентиляционных трубах. Нитрат аммония является взрывоопасным при высоких температурах или при контакте с огнем. Наиболее вероятный сценарий, однако, заключается в том, что капли травильной кислоты уносятся при образовании газов, происходящем при слишком быстром добавлении мочевины. Эти капли травильной кислоты затем уносятся в вентиляционные трубы, на холодных стенках которых могут отлагаться нитрат аммония и FeF3.

Известен ряд патентов, в которых описано такое применение мочевины в травильных ваннах. В DE 3412329 описана травильная ванна с нитрующей смесью, где мочевину добавляют в количествах, которые уточняются при непрерывно проводимом анализе на NOх в потоке, поступающем в вентиляцию. В GB 2048311 описаны травильные ванны с нитрующей смесью и мочевиной. Упоминается, что эффективность травления возрастает, если поддерживается определенное молярное соотношение мочевина/азотная кислота, а именно предпочтительно не более 1. Приводятся также теоретические соображения о том, что происходит, если добавить "слишком много" мочевины. Указанные, обычно применяемые количества мочевины, составляют таким образом от 0,05 до 5 мас.%. Также и в реферате JP 57019385 описано применение мочевины в травильных ваннах в количестве от 0,1 до 5% для использования в связи с производством стали. В SE 8305648 описана травильная ванна с нитрующей смесью и мочевиной, при этом суть патента заключается в том, что мочевину добавляют со дна травильной ванны. В реферате JP 61015989 описаны травильные ванны с нитрующими смесями и примерно 5 г/л мочевины. US 4626417 является более общим патентом, относящимся к снижению Nox при помощи смеси мочевины и серной кислоты. В Примере 1 показано возможное их использование в травильных ваннах. В реферате JP 54056939 описан процесс травления, который применяют в связи с производством труб из нержавеющей стали; в этом процессе мочевину добавляют на конечной стадии, когда травильная ванна уже нагрета до 30-70°С.

Уже в 1979 было описано (см. GB 2048311 и JP 54056939) применение мочевины в травильных ваннах для непрерывного травления нержавеющей стали в связи с производством таких сталей. Хотя этот способ, таким образом, известен в течение более 20 лет, до сих пор, насколько известно заявителю при его обширном знании вопроса, не существует промышленного способа, применяющего мочевину в травильных ваннах для непрерывного травления. Вероятно, причина заключается в том, что, как было показано, при использовании мочевины возникает целый ряд проблем. Как можно видеть также из многочисленных известных патентов, использование мочевины в травильных ваннах нелегко осуществить. Конкретно, проблемой является стойкость травильного агента. В SE 8305648, например, предполагается, как упомянуто выше, что проблемы, связанные с применением мочевины, можно решить путем добавления мочевины особым образом, со дна травильной ванны. В GB 2048311 написано, что не следует применять слишком много мочевины, точнее максимум 5 мас.%, и что мочевину следует добавлять в ходе травильного процесса. Как можно видеть в JP 61015989, содержание мочевины следует контролировать в ходе процесса. Несмотря на все эти предположения по поводу того, как следует решить проблемы, связанные с применением мочевины, и теперь, более чем 20 лет спустя, не существует промышленного процесса. Еще в меньшей степени предполагали, что мочевину можно применять в соответствии с настоящим изобретением, т.е. что травильный агент будет предназначен для неквалифицированных пользователей, не имеющих какой-либо возможности контролировать ход процесса; и при этом агент должен выдерживать длительное хранение.

В противоположность вышеприведенным ссылкам, которые относятся к травильным ваннам для травления нержавеющих сталей в связи с их производством, в SE 504733 и US 3598741, соответственно, описаны травильные агенты, которые более похожи на травильный агент по данному изобретению, то есть стабильный в течение длительного времени травильный агент для удаления оксидного слоя на нержавеющих сталях после их термообработки, например сварки; при этом травильный агент включает азотную кислоту и наполнители и представляет собой травильную пасту или травильный гель, которые следует наносить на термообработанную нержавеющую сталь, или травильную жидкость, которая должна распыляться по стали. Однако ни одна из этих двух ссылок не упоминает ничего об использовании мочевины для снижения образования NOх при использовании травильного агента.

Данное изобретение ставит целью обратиться к вышеупомянутой группе проблем и, более конкретно, обеспечить травильный агент, который является эффективным, простым в использовании и стабильным в течение длительного времени, который в то же время дает при использовании незначительное выделение азотистых паров. Кроме того, будет возможно транспортировать агент по данному изобретению в окончательно смешанной композиции и открывать и снова герметично закрывать контейнер с агентом несколько раз, причем каждый раз будет использоваться лишь часть агента, без потери его эффективности.

Следовательно, по данному изобретению обеспечивается травильный агент типа, упомянутого во вводной части; этот травильный агент включает также мочевину для того, чтобы снизить образование азотистых паров при использовании травильного агента.

Согласно одному из аспектов данного изобретения травильный агент представляет собой травильную пасту или травильный гель для нанесения на термообработанную нержавеющую сталь; или травильную жидкость для распыления по стали. Количество мочевины в травильном агенте должно составлять по меньшей мере 0,5 г/л, но максимально 200 г/л. Согласно одному из воплощений данного изобретения может быть достаточным количество мочевины в нижней части указанного интервала, предпочтительно максимум 80 г/л, а лучше максимально 50 г/л. Согласно другому воплощению данного изобретения его можно, однако, применять для снижения азотистых паров и для этой цели использовать более значительные количества мочевины, предпочтительно по меньшей мере 60 г/л, а еще более предпочтительно по меньшей мере 80 г/л, но максимально 200 г/л, а предпочтительно максимально 160 г/л.

Количество добавленной азотной кислоты должно составлять от 15 до 30 мас.%, предпочтительно от 17 до 27 мас.%, а еще более предпочтительно от 19 до 25 мас.%. При самом травлении количество азотной кислоты в агенте не должно превышать 23 мас.%. Однако количество азотной кислоты, добавленной к агенту, может превышать 23 мас.%, в соответствии с уже указанным интервалом, так как некоторое количество азотной кислоты поглощается добавленной мочевиной.

Благодаря содержанию мочевины в травильном агенте образование азотистых паров резко снижается при использовании травильного агента на окисленной нержавеющей стали. Связанным с этим преимуществом является то, что соотношение NO:NO2 смещается в направлении большего количества NO, если в травильном агенте применяют мочевину. Это позитивное преимущество, поскольку NO является менее вредным для людей, чем NO2. Предельно допустимая концентрация для NO2 в 25 раз ниже, чем для NO.

Еще одним преимуществом является то, что N2 и СО2, которые образуются при травлении в присутствии мочевины, участвуют в разрыхлении поверхности оксида, что при травлении является положительным эффектом. Кроме того, при травлении в присутствии мочевины достигают повышенного растворения металла/оксида металла. Возможно, происходит следующее (не ограничивая данное изобретение этой теорией): нитрит-ион удаляется, таким образом его ингибирующий эффект устраняется, что создает увеличенную скорость травления. Ингибирование можно объяснить с помощью постадийного исследования травления. Скорость реакции травления полностью обуславливается числом ионов, переносимых на поверхность металла, а также от этой поверхности. Чем выше концентрация продуктов реакции, присутствующих на поверхности металла, тем больше их адсорбировано на поверхности. Указанная адсорбция подавляет скорость травления посредством блокирования металла. В условиях установившегося состояния продукты реакции переносятся в жидкую фазу с такой же скоростью, с какой они образуются. Если к раствору добавлена мочевина, концентрация оксидов азота в жидкой фазе снижается, при этом снижается противодавление выходу азотистых паров. Вследствие этого оксиды азота более быстро удаляются от поверхности, и для получения условий установившегося состояния концентрация стремится к более низкому уровню. Вследствие этого скорость травления возрастает. Это приводит к тому, что количество азотной кислоты в травильном агенте по данному изобретению вероятно можно снизить при сохранении эффективности травления.

При использовании обычных травильных агентов, основанных на нитрующей смеси, то есть азотной кислоте (HNO3) и плавиковой кислоте (HF), для обработки травлением окисленных нержавеющих сталей металлы и оксиды металлов окисляются при образовании ионов Cr3+, Fe3+ и Ni2+. Затем HNO3 потребляется и образуются азотистые пары (NOх).

Реакции растворения металла:

Fe+4H++NO3-Fe3++NO+2H2O

Cr+4H++NO3-Cr3++NO+2H2O (1)

3Ni+8H++2NO3-3Ni2++2NO+4H2O

Реакции растворения оксидов:

3FeO·(Fe, Cr)2O3+28Н++NO3-6 Fe3++3Cr3++14Н2O+NO

NiO+2H+Ni2+2O (2)

Из вышеприведенных формул можно видеть, что прежде всего H+ потребляется в реакциях, а HF вообще не участвует. Поскольку, однако, реакция стремится к равновесию, то есть условиям, когда продукты образуются и разлагаются с одинаковой скоростью, HF играет важную роль. Она заключается в смещении реакции только в правую сторону, то есть в направлении растворения металла и оксида. С ионами металлов, образующимися при реакциях растворения, фторид из HF образует стабильные комплексы и таким образом препятствует тому, чтобы реакция прекратилась. При образовании комплексов фторида растворение металла и оксида ускоряются, поскольку равновесие смещается вправо при потреблении ионов металла.

Реакции, образующие комплексы металлов:

3HF+Fe3+→FeF3+3H+

2HF+Fe3+→FeF2++2H+

3HF+Cr3+→CrF3+3H+ (3)

2HF+Cr3+→CrF2++2H+

HF+Ni2+→NiF++H+

При реакциях растворения образуются азотистые пары (NOх), состоящие из различных оксидов азота NO3, N2O5, N2О3, N2O4, N2O, NO и NO2. Некоторые из них имеют значительную тенденцию разлагаться на NO и NO2, что, в связи с травлением, предполагает, что NOx рассматривают как смесь NO и NO2 (1:1). Образование газов при растворении является необходимой предварительной стадией самого процесса травления, поскольку они увеличивают давление под слоем оксида и практически срывают оксид.

Мочевина, которую также называют карбаматом аммония ((NH2)2CO), представляет собой бесцветное, зернистое соединение, которое легко растворяется в воде (˜500 г/л). Мочевина является также сравнительно недорогим химическим продуктом (примерно SEK 4:-/кг) по сравнению с другими материалами, снижающими NOx, например, различными твердыми пероксидами. Мочевина не реагирует с чистым моноксидом азота или диоксидом азота. В присутствии сильных кислот, таких как HNO3, однако, происходит образование комплексов, а затем комплекс мочевины и азотной кислоты реагирует с азотистой кислотой при образовании газообразного азота, циановой кислоты и воды по формуле

(H2N)2CO + HNO3 → (H2N)2CO·HNO3

2N)2СО·HNO3+HNO2 → N2+HNCO+2H2O+HNO3 (4)

Образованная циановая кислота (HNCO) тут же разлагается, или при воздействии азотистой кислоты, или при гидролизе

HNCO+HNO2→CO2 + N2 +H2O

HNCO + Н2O → NH3 + CO2 (5)

Таким образом, суммарная реакция будет следующей:

2N)2СО + 2 HNO2 → 2 N2 + 3 H2O + CO2

(H2N)2CO + HNO2 → N2 + NH3 + CO2 + Н2O (6)

Разложение циановой кислоты путем гидролиза происходит, если имеется избыток мочевины по отношению к азотной кислоте, концентрация азотистой кислоты очень низкая, или же если концентрация азотной кислоты столь высока, что она нейтрализует образовавшийся аммиак. Если указанные условия встретятся в травильном агенте, это предполагает, что будет протекать последняя из упомянутых реакций. Продукты реакции, образующиеся при разложении циановой кислоты путем гидролиза и в присутствии азотной кислоты, представляют собой газообразный азот, диоксид углерода, нитрат аммония и воду. Реакцию можно проиллюстрировать следующим образом:

(H2N)2CO + HNO2 + HNO3 → N2 + СО2 + NH4О3 + Н2O (7)

Для того чтобы нейтрализовать 1 кг азотистой кислоты теоретически необходимо 1,66 кг мочевины, при этом образуются 1,7 кг нитрата аммония, 22,4 л диоксида углерода и 22,4 л газообразного азота, а также 0,38 кг воды. Согласно T.W.Price, J. Chem.Soc., 115, 1919, 1354-60 и E.A.Werner, J. Chem. Soc., 118, 1920, 1078-81, были проведены исследования, связанные со скоростью разложения мочевины в присутствии азотной кислоты. Однако было обнаружено, что ниже температуры 60°С указанное разложение столь медленное, что им можно пренебречь.

ПРЕДПОЧТИТЕЛЬНЫЕ ВОПЛОЩЕНИЯ ИЗОБРЕТЕНИЯ

Предпочтительно травильный агент, в дополнение к мочевине и азотной кислоте, как упомянуто выше, включает также фтористоводородную кислоту, соответственно в количестве от 3 до 8 мас.%, предпочтительно от 4 до 7 мас.%, и еще более предпочтительно от 5 до 6 мас.%. Альтернативно или в сочетании травильный агент может включать серную кислоту, соответственно в количестве до 10 мас.%, предпочтительно от 0,1 до 5 мас.% и еще более предпочтительно от 0,2 до 3 мас.%. Однако могут применяться также и другие кислоты или соли кислот в переменных количествах. В особенности для травильной жидкости доказано, что добавление серной кислоты способно улучшать консистенцию и распределение этой жидкости по стали, если применяется жидкость.

Травильный агент в виде пасты, геля или распыляемой жидкости включает предпочтительно также добавку наполнителя в виде порошка, причем этот наполнитель предпочтительно состоит из неорганического загустителя, предпочтительно оксида щелочноземельного металла, предпочтительно в количестве от 2 до 30 мас.%. Наиболее предпочтительным является наполнитель из MgO в количестве от 2 до 15 мас.%, предпочтительно от 2 до 10 мас.%. Также можно использовать Al2O3 в количестве от 5 до 30 мас.%, предпочтительно от 10 до 25 мас.%, один или в сочетании с MgO. Функцией наполнителя является придание травильному агенту необходимой вязкости и консистенции для простой обработки при использовании его для травления.

Соответственные количества наполнителей для паст/гелей отличаются по сравнению с жидкостями, как показано далее. Для травильных паст или травильных гелей, которые должны проявлять консистенцию крема/пасты/мази, должны применяться добавки Al2O3 и MgO в вышеуказанных количествах. Для распыляемых жидкостей, которые должны иметь консистенцию, подобную кислому молоку, чтобы не стекать очень быстро со стали, предпочтительно использовать не Al2О3, а MgO в количестве от 2 до 10 мас.%, предпочтительно от 2 до 6 мас.%.

Оставшуюся часть травильного агента составляет вода.

При изготовлении травильного агента по данному изобретению обычно начинают с мочевины технической квалификации, которую растворяют в воде до практически насыщенного раствора, около 300-500 г/л при комнатной температуре, перед тем как добавить ее в травильный агент. Особенно для травильной пасты может быть предпочтительно добавление мочевины таким образом - в виде водного раствора. Однако для травильной жидкости, как было показано, добавка мочевины в твердом состоянии непосредственно в травильную жидкость приводит к более равномерному распределению травильной жидкости по стали при использовании травильной жидкости.

Кроме того, при разработке изобретения было показано, что раствор мочевины необходимо добавлять к травильному агенту на конечной стадии изготовления, когда травильный агент охлажден. В начале процесса изготовления травильного агента, то есть смешивания различных кислот и наполнителей, обычно достигаются температуры реакции около 45-50°С. При указанных температурах происходит некоторое выделение NOх из травильного агента. Если при этом мочевина уже добавлена, это приводит к тому, что происходит преждевременное потребление мочевины. Следовательно, согласно данному изобретению раствор мочевины не добавляют до тех пор, пока травильный агент не охладится примерно до 30°С или ниже, предпочтительно до 25°С или ниже. При указанных низких температурах выделение NOх прекращается или прекращается по существу, и, следовательно, проблема преждевременного потребления мочевины ликвидируется.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 изображает пример сравнительной зависимости, полученной при лабораторных испытаниях, проведенных с травильным гелем без мочевины.

Фиг.2 изображает пример зависимости, полученной в соответствии с данным изобретением при лабораторных испытаниях с травильным гелем, содержащим 80 г/л мочевины.

Фиг.3 изображает пример зависимости, полученной при крупномасштабных испытаниях, проведенных с травильной жидкостью без мочевины.

Фиг.4 изображает пример зависимости, полученной в соответствии с данным изобретением при крупномасштабных испытаниях, проведенных с травильной жидкостью, содержащей 80 г/л мочевины.

ПРИМЕР 1

В лаборатории была проведена серия испытаний с целью исследования эффекта снижения NOх мочевиной в травильных агентах и с целью исследования долговременной стабильности травильных агентов, содержащих мочевину.

Насыщенный раствор мочевины в воде (500 г/л) был приготовлен и добавлен к существующему травильному гелю типа 122 от компании Avesta Welding путем добавления данного количества раствора мочевины к 100 мл травильного геля с последующим тщательным перемешиванием. Различные концентрации, испытанные на травильную способность и снижение NOх, составляли 20, 40, 80 и 160 г/л. Образцы хранили в 250 мл пластиковых бутылочках с крышками при сравнительно высокой комнатной температуре (большей частью почти 30°С), а частично - на прямом солнечном свету. Время хранения изменяли от 24 часов до почти двух месяцев, чтобы исследовать стабильность травильного геля в присутствии мочевины.

Травильный гель 122 от компании Avesta Welding, который был использован в испытаниях, включал 22 мас.% азотной кислоты, 5 мас.% фтористо-водородной кислоты, 7,5 мас.% MgO, остальное составляла вода.

В проведенных испытаниях, где мочевина была подмешана к существующим травильным гелям, не придавали значения разбавлению кислот, присутствующих в травильном геле. Различные концентрации, которые были испытаны как на способность к травлению, так и на снижение NOx, составляли, как упомянуто выше, 20, 40, 80 и 160 г/л мочевины, что соответствует 4, 8, 16 и 32 мл соответственно раствора мочевины и разбавлению на такое же число процентов. Трудно компенсировать разбавление путем снижения количества воды в травильном геле, используемом в качестве исходного агента. Однако это разбавление не оказывает прямого влияния на результат травления, так как эффективность травления увеличивается в присутствии мочевины.

При испытаниях каждый образец травильного геля был нанесен с образованием слоя толщиной примерно от 1 до 1,5 мм на окисленный лист, 10×4 см, нержавеющей стали (сталь 18-8 типа 304), то есть на каждый лист потребовалось около 4-6 мл травильного агента. Количество азотистых паров, которые выделились при реакции между травильным агентом и металлом/оксидами металлов, измеряли с помощью химико-люминесцентного прибора. Измерение азотистых паров продолжали в течение 45 минут, а затем кусок листа был очищен при помощи высокого давления. Затем лист высушили, и стал виден результат травления.

В качестве сравнения на трех образцах анализировали травильный гель типа 122 от Avesta Welding без добавления мочевины. Результаты, полученные на образцах сравнения, отвечают максимальному выделению NO, NO2 и максимальному выделению NOх и приведены в Таблице 1. Различие между значениями NOx и NO + NO2 зависит от погрешности приборов.

Таблица 1

Сравнительный анализ травильного геля типа Avesta Welding 122 без добавления мочевины
ОбразецМаксимальное выделение NO ч.на млн (ppm)Максимальное выделение NO2 ч.на млн (ppm)Максимальное выделение NOx ч.на млн (ppm)
1165624204092
2193926154631
3186822584153

Изменение значений от анализа к анализу обусловлено трудностью добавления точно одинакового количества травильного геля на каждую пластину в каждом опыте. Таким образом, большее количество геля даст более высокое значение при анализе.

Результаты испытаний по данному изобретению приведены в Таблице 2. Травильные агенты, применяемые в соответствии с Таблицей 2, хранили в течение 58 дней при вышеупомянутых условиях.

Таблица 2

Травильный гель типа Avesta Welding 122 с различными концентрациями мочевины, причем гель анализировали после хранения в течение 58 дней
ОбразецКонцентрация мочевины (г/л)Максимальное выделение NOx ч.на млн (ppm)
6202288
12402064
2080796
27160194

Как можно видеть из Таблицы 2, присутствие мочевины приводит к значительному снижению образования NOx. Уже при количестве мочевины 20 г/л максимальное выделение NOx более чем на 40% ниже, чем эта величина при сравнительном испытании, а при количестве мочевины 40 г/л она наполовину ниже сравнительной величины согласно Таблице 1. При еще более высоких количествах мочевины максимальное выделение NOx снижается еще более резко, снижение составляет до 80% и 95% при 80 г/л и 160 г/л, соответственно.

Для того чтобы изучить величину возможного эффекта разложения от времени хранения образцов, образцы оценивали при различных количествах мочевины в различные моменты в ходе хранения. Эти результаты приведены в Таблице 3.

Таблица 3

Травильный гель типа Avesta Welding 122 с различными концентрациями мочевины, причем гель анализировали после различного времени хранения
ОбразецКонцентрация мочевины (г/л)Время хранения (дни)Максимальное выделение NOx ч.на млн (ppm)
12002387
22012689
32022641
42072649
520302196
620582288
74001358
84011328
94021225
104071448
1140301681
1240582064
12а403001841
13800509
14801480
15802480
16807711
178020856
188021627
198030766
208058796
20а803001078
211600167
221601167
231602188
241607207
2516020188
2616030199
2716058194
27а160300145

Результаты, приведенные в Таблице 3, показывают, что время хранения ни в коей степени не влияет на эффект снижения количества МОх из-за присутствия мочевины в травильном агенте, и они также подтверждают данные, приведенные в Таблице 2. Визуальная оценка результатов травления показала, что в случае всех образцов было получено удовлетворительное травление.

В качестве примеров, на Фиг.1 и 2 показаны графики выделения NO, NO2 и NOх, соответственно, в ч. на млн (ppm) в зависимости от времени в минутах для образца сравнения №3 (Фиг.1) в соответствии с вышеописанным, а также для образца №13 по данному изобретению (Фиг.2), в соответствии с вышеописанным. Эти графики подтверждают, что присутствие мочевины снижает указанные содержания, а также смещает при образовании NOх с главным образом NO2 на в основном NO.

ПРИМЕР 2

Было проведено крупномасштабное испытание с 80 г/л мочевины в травильной жидкости для травления распылением. Жидкость оставили созревать в течение 24 часов после добавления мочевины перед проведением испытания. Было проведено травление в крупном масштабе в испытательной камере объемом примерно 100 л и с листом площадью примерно 0,5 м2 стали 18-8. Травильный раствор был нанесен распылением посредством кислотостойкого мембранного насоса. Травильный гель типа 122 от Avesta Welding, который применяли в испытаниях, содержал 22 процента масс. азотной кислоты, 5 мас.%. фтористо-водородной кислоты, 4 мас.%. MgO, остальное составляла вода.

Результаты измерения химико-люминесцентным прибором приведены на Фиг.3 (сравнительное испытание, без мочевины) и Фиг.4 (испытание по данному изобретению). Максимальное выделение NOх в ходе сравнительного испытания составило 2991 ppm, а в ходе испытания по данному изобретению 321 ppm, что дает снижение на 90%.

Визуальная оценка результатов травления показала, что в случае всех образцов было получено удовлетворительное травление.

ПРИМЕР 3.

Крупномасштабное испытание с 150 г/л мочевины в травильной жидкости для травления распылением было проведено таким же образом, как в Примере 2. Затем оценили различия в результатах травления в зависимости от того факта, добавляли ли мочевину к травильной жидкости в виде водного раствора или непосредственно в твердом состоянии. Визуальная оценка показала, что наиболее равномерное распределение жидкости было получено, если мочевину добавляли в твердом состоянии прямо в травильную жидкость, что приводило также к наиболее равномерным результатам травления. Даже если мочевину добавляли в виде водного раствора, было получено удовлетворительное травление.

ПРИМЕР 4

Гель для травления с добавлением 80 г/л мочевины и травильная жидкость с добавлением 160 г/л мочевины были проанализированы с помощью прибора Scanacon SA-20, предназначенного для анализа на свободные активные кислоты в травильных агентах. Целью являлось выяснение того факта, изменяется ли концентрация кислоты, если в растворе присутствует мочевина. Результаты различных анализов приведены в Таблице 4.

Таблица 4

Анализ кислот в травильных растворах
ОбразецКонцентрация HF (г/л)Концентрация HNO3(г/л)
Гель для травления + мочевина79280
Гель для травления + мочевина через одну неделю81302
Травильная жидкость + мочевина84207
Травильная жидкость+мочевина через одну неделю93182

Результат показывает, что даже после хранения в течение 7 дней не имеется следов изменения состава геля для травления типа 122. Однако содержание азотной кислоты в кислоте для травления типа 204 несколько снижается после хранения в течение 7 дней. Этот факт можно скомпенсировать увеличением содержания азотной кислоты с самого начала.

Изобретение не ограничивается вышеприведенными примерами и может изменяться в пределах, указанных формулой изобретения. В частности, следует заметить, что состав травильного агента может изменяться, но, однако, для данного изобретения необходимо, чтобы присутствовал некоторый компонент, выделяющий азотистые пары при травлении окисленной нержавеющей стали, и, конечно, чтобы присутствовала мочевина для подавления упомянутого выделения азотистых паров.

1. Травильный агент для удаления оксидного слоя на нержавеющей стали после ее термообработки, такой как сварка, включающий азотную кислоту в количестве от 15 до 30 мас.% и наполнитель, причем наполнитель представляет собой порошкообразный неорганический загуститель в количестве от 2 до 30 мас.%, остальную часть травильного агента составляет вода, а травильный агент представляет собой пасту для травления или гель для травления, которые следует наносить на поверхность термообработанной нержавеющей стали, или же травильную жидкость, которую следует распылять по стали, отличающийся тем, что травильный агент также включает мочевину в количестве по меньшей мере 0,5 г/л, но не более 200 г/л, для пониженного образования азотистых паров при использовании этого травильного агента, и тем, что этот травильный агент является стабильным в течение длительного времени при хранении при комнатной температуре.

2. Травильный агент по п.1, отличающийся тем, что он включает мочевину в количестве не более 80 г/л, предпочтительно не более 50 г/л.

3. Травильный агент по п.1, отличающийся тем, что он включает мочевину в количестве по меньшей мере 60 г/л, предпочтительно по меньшей мере 80 г/л и предпочтительно не более 160 г/л.

4. Травильный агент по любому из пп.1-3, отличающийся тем, что количество указанной азотной кислоты составляет от 17 до 27 мас.%, более предпочтительно от 19 до 25 мас.%.

5. Травильный агент по любому из пп.1-4, отличающийся тем, что он также включает фтористоводородную кислоту в количестве от 3 до 8 мас.%, предпочтительно от 4 до 7 мас.%, а еще более предпочтительно от 5 до 6 мас.%, и/или серную кислоту в количестве до 10 мас%, предпочтительно от 0,1 до 5 мас.%, а еще более предпочтительно от 0,2 до 3 мас.%.

6. Травильный агент по любому из пп.1-5, отличающийся тем, что указанный наполнитель в нем представляет собой оксид щелочноземельного металла.

7. Травильный агент по п.6, отличающийся тем, что указанный наполнитель включает Al2О3 в количестве от 5 до 30 мас.%, предпочтительно от 10 до 25 мас.%, и/или MgO в количестве от 2 до 15 мас.%, предпочтительно от 2 до 10 мас%.

8. Способ изготовления травильного агента по любому из пп.1-7, характеризующийся тем, что указанную мочевину добавляют, когда азотная кислота или кислоты и наполнитель имеют температуру ниже 30°С, предпочтительно ниже 25°С, предпочтительно на конечной стадии изготовления, когда азотная кислота или кислоты и наполнитель уже охладились.

9. Способ изготовления травильного агента по п.8, отличающийся тем, что указанную мочевину добавляют к азотной кислоте или кислотам и наполнителю, предпочтительно находящимся в виде пасты/геля, в виде водного раствора, который предпочтительно является по существу насыщенным при комнатной температуре и содержит примерно от 300 до 500 г/л.

10. Способ по п.8, отличающийся тем, что указанную мочевину добавляют в твердом состоянии к азотной кислоте или кислотам и наполнителю, предпочтительно находящимся в виде жидкости.



 

Похожие патенты:
Изобретение относится к химической очистке поверхности металлов и может быть использовано для удаления окалины и ржавчины со сварных швов изделий из нержавеющей стали, а также придания им декоративного вида.

Изобретение относится к области металлургии, а более точно к способу протравливания нержавеющей стали. .

Изобретение относится к химической обработке металлов и может быть использовано при химической обработке поверхности изделий из стали с целью удаления оксидов железа (окалины) и гидроксидов железа (ржавчины) различного происхождения, а также для подготовки поверхности стальных изделий к последующим технологическим операциям нанесения гальванических покрытий.

Изобретение относится к области химической обработки металлической поверхности, в частности к составам для удаления продуктов атмосферной коррозии с поверхности нержавеющих сталей.

Изобретение относится к химико-термической обработке металлов; в частности к способам очистки от окалины поверхности железнодорожных колес, и может быть использовано на металлургических и машиностроительных предприятиях.

Изобретение относится к способу очистки эксплуатационных изломов стали для фрактографических исследований. .

Изобретение относится к составам для удаления окалины с поверхности углеродистых сталей перед нанесением металлических покрытий. .

Изобретение относится к области химической обработки металлов, в частности к очистке травлением стальнь1х изделий от сульфидов, и может быть использовано в нефтегазодобывающей и перерабатывающей промьшшенности.

Изобретение относится к химической обработке поверхности металлических материалов, в частности к химической поверхностной обработке с использованием водных кислых растворов, и предназначено для повышения технологических свойств тонколистового проката малоуглеродистых сталей и изделий из него.
Изобретение относится к отделке металла, в частности к травлению листовой стали. .

Изобретение относится к химической обработке металлов, в частности к травлению поверхности углеродистой термообработанной стали с целью удаления окалины и защиты поверхности в металлургической промышленности, метизном производстве, машиностроении и других производствах.

Изобретение относится к химической обработке металлов и может быть использовано при химической обработке поверхности изделий из стали с целью удаления оксидов железа (окалины) и гидроксидов железа (ржавчины) различного происхождения, а также для подготовки поверхности стальных изделий к последующим технологическим операциям нанесения гальванических покрытий.

Изобретение относится к способу травления стали, предпочтительно нержавеющей стали, кислотным водным травильным раствором, содержащим Fe3+ и Fe2+. .
Изобретение относится к металлургии и касается способа травления высококачественных сталей, используемых преимущественно для создания теплых энергетических зон, при котором сталь подвергается травлению нейтральным электролитом с последующей обработкой нитрующей азотной кислотой или смесью фторида железа с фтористоводородной кислотой.
Изобретение относится к области химической обработки металлов, в частности, к растворам и способам травления нержавеющей стали и может быть использовано в металлургической промышленности и других отраслях.

Изобретение относится к области химической обработки изделий из высоколегированных сталей и сплавов и может быть использовано в технологии химической обработки поверхностей труб, прутка, ленты, листа.

Изобретение относится к удалению окалины с углеродистой стали и может быть использовано для промывок теплоэнергетического оборудования - паровых котлов и систем коммуникации
Наверх