Топливная емкость для долговременного хранения сжиженного природного газа

Изобретение относится к области криогенной техники и может быть использовано в качестве топливных емкостей для различных транспортных средств (например, автотранспорта, самолетов и т.д.) или стационарных емкостей для хранения криогенных топлив. Топливная емкость для долговременного хранения сжиженного природного газа, состоящая из внутреннего контейнера, изготовленного из коррозионно-стойкого материала, и основного слоя теплоизоляции, отличающаяся тем, что она снабжена двумя дополнительными слоями теплоизоляции, выполненными из композиционных материалов, например из армированного стекловолокна, металлопластика или стеклопластика, при этом один из дополнительных слоев расположен между внутренним контейнером и основным слоем изоляции, а другой слой расположен над основным слоем изоляции. Использование изобретения позволит снизить массу и стоимость криогенных емкостей, а также увеличить время бездренажного хранения сжиженного природного газа. 1 ил.

 

Изобретение относится к области криогенной техники и может быть использовано в качестве топливных емкостей для различных транспортных средств (например, автотранспорта, самолетов и т.д.) или стационарных емкостей для хранения криогенных топлив.

Известно применение баллонов из металлопластика, обладающих равными с металлическими баллонами прочностными характеристиками (Свободов А.Н. Техномаш: газотопливное оборудование для транспорта. //Газовая промышленность, №10,1999, стр.58).

Известно, что топливные баллоны, изготовленные из композиционных материалов (стеклопластиковые баллоны), по сравнению с металлическими обладают лучшими массовыми характеристиками (Саушин С.Н. Казанское опытно-конструкторское бюро "Союз".//Газовая промышленность, №10, 1999, стр.59).

Известно, что в криогенике традиционными видами теплоизоляции являются: пеноматериалы (вспученные пенопласты, пенополиуретан и т.д.), газонаполненные порошки и волокнистые материалы, чисто вакуумная изоляция, вакуумно-порошковая изоляция, многослойная экранно-вакуумная изоляция (Баррон Р.Ф. Криогенные системы: Пер. с англ. - 2-е изд. - М.: Энергоатомиздат, 1989, стр. 326-327).

Известны резервуары для хранения сжиженного природного газа (СНГ), состоящие из внутренней оболочки, выполненной из коррозионно-стойкой стали 12Х18Н10Т, теплоизоляции, выполненной на основе традиционной для криогеники технологии (порошковая изоляция), и наружной оболочки, изготовленной из монолитного железобетона (Усюкин И.П. Установки, машины и аппараты криогенной техники. - М.: Легкая и пищевая промышленность, 1982, стр. 275). Однако данные технические решения могут быть использованы только в качестве стационарных резервуаров большой емкости для хранения СПГ.

Известно устройство топливной емкости для самолета, используемой в качестве криогенного бака для сжиженного природного газа, состоящее из основного бака, изготовленного из коррозионно-стойкого металла (алюминиевого сплава), и слоя теплоизоляции, изготовленного на основе традиционной в криогенике технологии (пеноматериала) (Солозобов В.И., Андреев В.А. Самолеты на сжиженном природном газе.//Газовая промышленность, №10, 1999, стр. 45).

Известно устройство криогенного бака для сжиженного природного газа, применяемого на автотранспорте, включающее в себя внутренний контейнер, изготовленный из коррозионно-стойкого металла, теплоизоляции выполненной на основе традиционной а криогенике технологии (многослойной экранно-вакуумной изоляцией) и наружной оболочки, выполненной из металла (Цфасман Г.Ю., Бармин Н.В., Дудкин И.Е. Криогенное оборудование автомобильных топливных систем.//Холодильная техника, №2, 1998, стр. 32). Однако криогенные емкости с традиционной теплоизоляцией и металлическим наружным кожухом имеют большую массу и высокую стоимость.

Технический результат, который может быть получен при осуществлении изобретения, заключается в снижении массы и стоимости криогенных емкостей, а также в увеличении времени бездренажного хранения сжиженного природного газа.

Для достижения данного технического результата топливная емкость для долговременного хранения сжиженного природного газа, состоящая из внутреннего контейнера, изготовленного из коррозионно-стойкого металла, основного слоя теплоизоляции, выполненного на основе традиционной в криогенике технологии (многослойной экранно-вакуумной изоляцией), и наружной оболочки, снабжена дополнительно двумя слоями теплоизоляции, выполненными из композиционных материалов, имеющих низкую теплопроводность и высокую прочность, при этом один из дополнительных слоев расположен между внутренним контейнером и основным слоем теплоизоляции, а другой слой расположен над основным слоем теплоизоляции и является одновременно наружной защитной оболочкой для него.

Введение в состав топливной емкости дополнительной теплоизоляции, выполненной из композиционных материалов, имеющих низкую теплопроводность и высокую прочность (например, из армированного стекловолокна, металлопластика, стеклопластика и т.д.), и состоящей из двух слоев, один из которых расположен между внутренним контейнером и основным слоем теплоизоляции, а другой - над основным слоем теплоизоляции, позволяет получить новое свойство, заключающееся в увеличении толщины общего слоя теплоизоляции, что обеспечивает снижение теплопритоков из окружающей среды и, соответственно, увеличивает время бездренажного хранения СПГ, защищает основной слой теплоизоляции от механических повреждений, что позволяет отказаться от металлического наружного кожуха, а также повышает прочность внутреннего контейнера, что позволяет хранить в емкости сжиженный природный газ при высоком давлении и уменьшить толщину стенки внутреннего контейнера, при этом отказ от металлического наружного кожуха и уменьшение толщины стенки внутреннего контейнера позволяет снизить в целом массу криогенной емкости.

На чертеже изображена топливная емкость для долговременного хранения сжиженного природного газа.

Топливная емкость 1 состоит из внутреннего контейнера 2, изготовленного из коррозионно-стойкого металла (например, алюминиевого сплава АМГ6, коррозионно-стойкой стали 12Х18Н10Т и т.д.), основного слоя теплоизоляции 3, выполненного на основе традиционной в криогенике технологии (например, из пенополиуретана, порошковой изоляции или многослойной экранно-вакуумной изоляции), и двух слоев теплоизоляции, выполненных из композиционных материалов, имеющих низкую теплопроводность и высокую прочность (например, из армированного стекловолокна, стеклопластика, металлопластика и др.), один из которых 4 расположен между контейнером 2 и основным слоем теплоизоляции 3, а другой слой 5 расположен над основным слоем теплоизоляции 3.

Топливная емкость для долговременного хранения сжиженного природного газа работает следующим образом.

Во внутренний контейнер 2, изготовленный из коррозионно-стойкого металла, топливной емкости 1, заливается сжиженный природный газ (криогенная жидкость). Температура кипения СПГ составляет около 111 К. В результате значительной разницы температур между температурой внутри контейнера 2 и температурой окружающей среды в контейнер 2 из окружающей среды направлены тепловые потоки, приводящие к испарению СПГ. Для теплоизоляции контейнера 2 предусмотрен основной слой теплоизоляции 3, выполненный, например, из пенополиуретана толщиной до 50 мм или в виде многослойной экранно-вакуумной изоляции. Для увеличения общей толщины теплоизоляции между внутренним контейнером 2 и основным слоем теплоизоляции 3, а также поверх слоя 3 размещены дополнительные слои теплоизоляции 4 и 5, изготовленные из композиционных материалов (армированного стекловолокна, стеклопластика или металлопластика). При этом теплоизоляционный слой 4 одновременно повышает прочность контейнера 2, что позволяет уменьшить толщину его металлической стенки (например, до 0,5 мм), и одновременно обеспечивает хранение СПГ даже при высоком давлении внутри контейнера 2. При эксплуатации транспортных средств прочный теплоизолирующий слой 5 (стеклопластик, армированное стекловолокно) одновременно предотвращает механическое разрушение основного теплоизоляционного слоя 3.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Свободов А.Н. Техномаш: газотопливное оборудование для транспорта.//Газовая промышленность, №10, 1999, стр.58.

2. Саушин С.Н. Казанское опытно-конструкторское бюро "Союз".//Газовая промышленность, №10,1999, стр. 59.

3. Баррон Р.Ф. Криогенные системы: Пер. с англ. - 2-е изд. - М.: Энергоатомиздат, 1989, стр. 326-327.

4. Усюкин И.П. Установки, машины и аппараты криогенной техники. - М.: Легкая и пищевая промышленность, 1982, стр. 275.

5. Солозобов В.И., Андреев В.А. Самолеты на сжиженном природном газе.//Газовая промышленность, №10, 1999, стр. 45.

6. Цфасман Г.Ю., Бармин Н.В., Дудкин И.Е. Криогенное оборудование автомобильных топливных систем.//Холодильная техника. №2, 1998, стр. 32 - прототип.

Топливная емкость для долговременного хранения сжиженного природного газа, состоящая из внутреннего контейнера, изготовленного из коррозионно-стойкого материала, и основного слоя теплоизоляции, отличающаяся тем, что она снабжена двумя дополнительными слоями теплоизоляции, выполненными из композиционных материалов, например из армированного стекловолокна, металлопластика или стеклопластика, при этом один из дополнительных слоев расположен между внутренним контейнером и основным слоем изоляции, а другой слой расположен над основным слоем изоляции.



 

Похожие патенты:

Изобретение относится к области криогенной техники и может быть использовано в качестве топливных емкостей для различных транспортных средств (например автотранспорта, самолетов и т.д.) или стационарных емкостей для хранения криогенных топлив.

Изобретение относится к области криогенной техники, а точнее к области проектирования и эксплуатации емкостей для хранения и подачи к потребителю криогенных продуктов.

Изобретение относится к теплоизоляции криогенного оборудования, а именно сосудов Дьюара, криогенных трубопроводов и кабелей. .

Изобретение относится к технологиям монтажа теплоизоляции на цилиндрических сосудах с криволинейными днищами, предназначенных для хранения и транспортировки сжиженных газов с низкой температурой кипения.

Изобретение относится к области криогенной техники и позволяет повысить эффективность изоляции на основе пенопластов Это достигается тем, что в теплоизоляции состоящей из двух слоев пенопласта, каждый из которых покрыт герметиком, в первый, прилегающий к емкости слой с распределенным адсорбентом введен оптически мало прозрачный подслой из металлизированного сетчатого материала, например из металлизированной стеклоткани .

Изобретение относится к устройству , формирующему конструкцию термически изолирующей стенки теплоизолированного герметичного резервуара для жидкости о Цель изобретения - повышение эффективности за -счет ускорения и упрощения обнаружения утечек жидкости, а также повышение прочности .

Изобретение относится к конструкции герметичной стенки, предназначенной в частности для внутренней облицовки герметичного и термоизолированного резервуара, встроенного в несущую конструкцию, а также к резервуару, снабженному этой конструкцией

Изобретение относится к элементам конструкций изделий, работающих при криогенных температурах, и может быть использовано в ракетной и авиационной технике

Изобретение относится к области криогенной техники и может быть использовано в качестве стационарных хранилищ для сжиженного природного газа

Изобретение относится к области криогенной техники и может быть использовано в качестве стационарных хранилищ для сжиженного природного газа

Настоящее изобретение относится к изготовлению непроницаемых и теплоизолированных резервуаров, встроенных в несущую конструкцию. Контейнер для сжиженного природного газа, содержащий несущую конструкцию (11) и непроницаемый и теплоизолированный резервуар для сжиженного природного газа, который имеет множество стенок, прикрепленных к несущей конструкции. Каждая стенка резервуара в последовательном порядке по толщине изнутри резервуара в наружном направлении содержит основной непроницаемый барьер, основной теплоизоляционный барьер, вспомогательный непроницаемый барьер и вспомогательный теплоизоляционный барьер. Стенки резервуара включают, по меньшей мере, одну вертикальную стенку, вспомогательный непроницаемый барьер которой содержит первый непроницаемый лист вверху стенки и соединительное устройство, которое непроницаемо соединяет первый непроницаемый лист с несущей конструкцией. Соединительное устройство содержит первую металлическую пластину (22), параллельную первому непроницаемому листу, и второй непроницаемый лист (17), прикрепленный, с одной стороны, к первому непроницаемому листу, а, с другой стороны, к первой металлической пластине. 20 з.п. ф-лы, 13 ил.

Изобретение относится к низкотемпературной и криогенной технике, преимущественно к системам хранения и транспортировки сжиженных газов и жидкостей, также может быть использовано в области теплотехники. Способ изоляции резервуара для хранения и транспортировки криогенных сжиженных газов включает засыпку изоляционного материала в межстенное пространство, образованное стенками внутреннего сосуда и внешнего вакуумного кожуха резервуара, и откачку этого пространства до необходимого остаточного давления. Межстенное пространство заполняют изоляционным материалом, используя цикличную засыпку из бункера под максимальным разрежением в межстенном пространстве. Изоляционный материал - предварительно подготовленная смесь перлита с гранулированной ватой. Указанная гранулированная вата выполнена из кусочков, образованных из базальтовых или стеклянных супертонких волокон. Технический результат - исключение усадки перлита, улучшение газовой проводимости слоя и повышение надежности конструкций, в которых используется заявленный способ. 1 з.п. ф-лы, 3 ил.

Изобретение относится к резервуарам для хранения криогенных жидкостей. Резервуар (100), выполненный в виде двойной конструкции, для хранения сверхнизкотемпературной жидкости с усовершенствованием. Для достижения вышеупомянутой цели создан криогенный резервуар 100, выполненный в виде двойной конструкции, содержащей внутренний резервуар 3 для хранения текучей среды L низкотемпературного сжижения и внешний резервуар 6, охватывающий нижнюю часть и корпус внутреннего резервуара 3. Внутренний резервуар 3 включает в себя внутреннюю емкость 1 с дном, выполненную из бетона, и внутренний холодостойкий рельеф 2, покрывающий внутреннюю поверхность внутренней емкости 1. Внешний резервуар 6 включает в себя внешнюю емкость 4 с дном, выполненную из бетона, и внешний холодостойкий рельеф 5, покрывающий внутреннюю поверхность внешней емкости 4. Изобретение обеспечивает простоту его конструкции и быстроту монтажа и при этом высокую надежность резервуара. 3 н. и 6 з.п. ф-лы, 9 ил.

Группа изобретений относится к способу установки изоляционного покрытия и блока с изоляционным покрытием для криогенных резервуаров. Способ установки изоляционного покрытия включает в себя этап транспортировки, на котором транспортируют блок (1) с изоляционным покрытием, в котором изоляционное покрытие (2) и транспортировочный держатель (3) соединены вместе между внутренним резервуаром (60) и внешним резервуаром (50) резервуара с двойной оболочкой в подвешенном состоянии; и этап монтажа, на котором блок (1) с изоляционным покрытием монтируют на облицовочной плите внутреннего резервуара (60). Транспортировочный держатель (3) формируется путем крепления штифта (34) для фиксации изоляционного покрытия к основному корпусу (3A) держателя посредством штифтового соединения. Изоляционное покрытие (2) удерживается на штифте (34) для фиксации изоляционного покрытия. Использование изобретения позволяет повысить производительность работы по установке изоляционных покрытий и повысить безопасность во время их установки. 2 н. и 6 з.п. ф-лы, 10 ил.

Группа изобретений относится к резервуарам, рассчитанным на сжатые жидкотекучие среды, а именно сжиженный природный газ. Герметичный и изолированный резервуар для холодной сжатой жидкотекучей среды содержит жесткий герметичный корпус (4), герметичную мембрану (1), рассчитанную на вхождение в контакт с холодной жидкотекучей средой в резервуаре, слой термоизоляционного материала (3) между мембраной (1) и внутренней поверхностью корпуса (4) и устройство (5) выравнивания давления. Внутренняя поверхность корпуса (4) служит опорной поверхностью для мембраны (1). Устройство (5) способно ограничивать разность давлений в первом герметичном объеме внутри мембраны (1) и во втором герметичном объеме снаружи мембраны (1). Группа изобретений направлена на создание резервуара, рассчитанного на относительно высокое давление. 2 н. и 15 з.п. ф-лы, 10 ил
Наверх