Измерительный шунт

Измерительный шунт относится к конструкции шунтов, предназначенных для измерения токов, и может быть использован в малогабаритных приборах, например, в высокочастотных амперметрах, ваттметрах и мультиметрах. Измерительный шунт содержит арматуру, выполненную из изоляционного материала, токовые наконечники с токовыми и потенциальными зажимами, резистивный и крепежные элементы, при этом шунт выполнен в виде плоской бифилярной обмотки по спирали Архимеда, витки которой разделены между собой диэлектриком и зафиксированы теплопроводящим герметиком, а арматура выполнена в виде двух втулок с фланцами из изоляционного материала, между фланцами которых расположен резистивный элемент, при этом крепежный элемент размещен в соосном отверстии изоляционных втулок и резистивного элемента. Техническим результатом является уменьшение габаритных размеров и занимаемого шунтом объема, повышение частотного диапазона измерения, упрощение конструкции и снижение трудоемкости изготовления и подгонки шунта. 3 ил.

 

Изобретение относится к измерительной технике, в частности к конструкции измерительных шунтов, предназначенных для измерения токов.

Известны конструкции измерительных шунтов [1], состоящие из арматуры - основания, изготовленного из изоляционного материала, на котором укреплены токовые наконечники из меди или латуни с токовыми и потенциальными зажимами и впаянный в них твердым припоем резистивный элемент в виде тонкой шины или проволоки из манганина, расположенной в плоскости, параллельной основанию.

Существенными недостатками известной конструкции являются значительные габаритные размеры, масса и ограниченный частотный диапазон при их использовании в цепях переменного тока, что не позволяет использовать их в высокочастотных амперметрах, ваттметрах и мультиметрах.

Известный шунт, описанный в [1], является прототипом.

Техническим результатом, который обеспечивает заявляемый измерительный шунт, является значительное уменьшение габаритных размеров и массы, упрощение конструкции и технологии изготовления, а также расширение частотного диапазона до 20 кГц.

Технический результат достигается тем, что в заявляемом устройстве резистивный элемент выполнен в виде плоской бифилярной обмотки по спирали Архимеда, витки которой разделены между собой диэлектриком и зафиксированы теплопроводящим герметиком, а арматура выполнена в виде двух втулок с фланцами из изоляционного материала, между фланцами которых расположен резистивный элемент, при этом крепежный элемент размещен в соосном отверстии изоляционных втулок и резистивного элемента.

Сопоставительный анализ заявляемого шунта с известным решением показывает, что в заявляемом шунте изменена конструкция резистивного элемента, арматура, а также их взаимное соединение. Таким образом, заявляемое устройство соответствует критерию "новизна", а сравнение заявляемого устройства с известным техническим решением в данной области техники позволило выявить признаки, отличающие заявленное устройство от известных, подтверждающее вывод о том, что предлагаемое техническое решение имеет изобретательский уровень.

Изобретение является промышленно применимым, так как может быть использовано в измерительной технике, в частности при изготовлении малогабаритных измерительных шунтов, встраиваемых в высокочастотные амперметры, ваттметры и мультиметры, измеряющие токи до 20А в частотном диапазоне до 20 кГц.

Предлагаемое изобретение поясняется чертежами, где изображены

- на фиг.1 - прототип измерительного шунта в двух проекциях;

- на фиг.2 - резистивный элемент в двух проекциях;

- на фиг.3 - измерительный шунт согласно изобретению в сборе в двух проекциях.

На фиг.1, 2, 3 отображены: 1 - арматура - основание прототипа шунта; 2 - токовые наконечники; 3 - резистивный элемент; 4 - токовые зажимы прототипа; 5 - потенциальные зажимы прототипа; 6 - винты крепления токовых наконечников к арматуре прототипа; 7 - отверстия для крепления шунта; 8 - отверстия для крепления токовых выводов заявляемого шунта; 9 - отверстия для крепления потенциальных выводов заявляемого шунта; 10 - арматура - изоляционные втулки в заявленном шунте; 11 - теплопроводящий герметик для фиксации витков резистивного элемента заявляемого шунта; 12, 13 - крепежные элементы (винт 12 и гайка 13) заявляемого шунта.

Работает заявляемый шунт следующим образом.

Измеряемый ток подключается к токовым выводам (отверстия 8 на фиг.2), которые выполняются из манганина как продолжение резистивного элемента, что упрощает конструкцию шунта. Падение напряжения на шунте измеряется на потенциальных выводах (отверстия 9, фиг.2). Стабильность номинального сопротивления шунта обеспечивается путем частичного заполнения зазоров между витками резистивного элемента теплопроводящим герметиком 11 (например, по взаимно перпендикулярным диаметрам шунта), обеспечивая при этом хорошую теплопередачу выделяемого шунтом тепла от тока нагрузки. Резистивный элемент с закрепленными герметиком витками размещается между фланцами изоляционных втулок, которые имеют цилиндрические ступицы с отверстиями, которыми они входят в центральное отверстие резистивного элемента, обеспечивая электрическую изоляцию стяжного винта 12 с гайкой 13 (фиг.3). Выполнение резистивного элемента в виде бифилярной спирали Архимеда упрощает электрическую подгонку шунта к номинальному значению сопротивления (у прототипа это выполняется вручную подпиливанием), так как при начальном значении сопротивления меньше номинального увеличение значения сопротивления можно производить шлифовкой всей плоскости спирали противоположной плоскости с потенциальными выводами, а в случае начального сопротивления больше номинального (у прототипа это окончательный брак) уменьшение значения сопротивления можно производить запайкой внутреннего конца спирали резистивного элемента по торцам ленты. Выполнение резистивного элемента заявляемого шунта в виде бифилярной спирали Архимеда позволяет увеличить частотный диапазон его применения до 20 кГц, поскольку частотная погрешность шунта исключается сложением резистивного элемента вдовое с последующей навивкой его по спирали Архимеда, начиная от точки перелома резистивного элемента (бифилярная намотка), в то время как шунты по прототипу применяются на постоянном токе или на промышленной частоте 50 Гц.

Конструкция заявляемого шунта согласно изобретению существенно уменьшает габаритные размеры и упрощает шунт. Так, типовое значение сопротивления шунты для мультиметра со стрелочным измерителем составляет 0,03-0,05 Ом, при этом для измерения тока силой 10-15А длина резистивного элемента составит 300 - 400 мм. Такой шунт для малогабаритного мультиметра в конструктивном исполнении согласно прототипу неприемлем (объем шунта в конструктивном исполнении согласно прототипу составит 80 см3, а в соответствии с заявляемым изобретением - 10,6 см3). Шунт в соответствии с заявляемым изобретением легко монтируется в прибор и для его крепления потребуется одна дополнительная гайка, в то время как для шунта по прототипу потребуется 6 дополнительных винтов.

Таким образом, предлагаемая конструкция измерительного шунта позволяет получить следующие преимущества:

- уменьшение габаритных размеров и занимаемого шунтом объема в 7-8 раз;

- повышения частотного диапазона измерения до 20 кГц;

- упрощение конструкции и снижение трудоемкости изготовления и подгонки шунта.

Источник информации

1. Технические условия на шунты стационарные 75ШС-01 ТУ 25-04.463-78.

Измерительный шунт, содержащий арматуру, выполненную из изоляционного материала, токовые наконечники с токовыми и потенциальными зажимами, резистивный и крепежные элементы, отличающийся тем, что резистивный элемент выполнен в виде плоской бифилярной обмотки по спирали Архимеда, витки которой разделены между собой диэлектриком и зафиксированы теплопроводящим герметиком, а арматура выполнена в виде двух втулок с фланцами из изоляционного материала, между фланцами которых расположен резистивный элемент, при этом крепежный элемент размещен в соосном отверстии изоляционных втулок и резистивного элемента.



 

Похожие патенты:

Изобретение относится к конструкции шунтов, предназначенных для измерения токов, и может быть использован в малогабаритных приборах: счетчиках электрической энергии, щитовых амперметрах, ваттметрах и др.

Изобретение относится к измерительной технике, в частности к конструкции измерительных резисторов, которые могут быть использованы для создания мер сопротивления или измерительных шунтов.

Изобретение относится к электротехнике, а именно к инфракрасной технике, и может быть использовано для нагрева объектов различной конфигурации. .

Изобретение относится к электротехнике, в частности к электросварке, и решает задачу создания резисторного блока простой и надежной конструкции с минимальными габаритами и пониженной материалоемкостью.

Лазер // 2054217

Резистор // 2046416

Изобретение относится к мощной импульсной технике и может использоваться в качестве нагрузки или ее эквивалента, а также в качестве схемного элемента мощных высоковольтных импульсных устройств.

Резистор // 1758679

Изобретение относится к электротехнике и может быть использовано для регулировки сварочного тока. .

Изобретение относится к электротехнике, в частности к электрооборудованию транспортных средств, а именно к силовым нагрузочным резисторным модулям для транспортных средств с электротягой, например для тепловоза

Изобретение относится к конструкции резисторов большой мощности и может быть использовано в системах электродинамического торможения электрического транспорта, например электровозов

Изобретение относится к электроизмерительной технике, а более конкретно к безиндуктивным шунтам, предназначенных для измерения импульсных токов

Изобретение относится к конструкции воздухоохлаждаемых резисторов большой мощности, а именно к балластным резисторам в установках высокой мощности

Изобретение относится к электрофизике и электротехнике и может применяться при изготовлении резистивных устройств (соленоидов) длительного использования, предназначенных для работы в режимах однократных импульсов, импульсно-периодическом, резонанса токов, а также в режиме квазипостоянного тока. Техническим результатом является: максимально возможное при фиксированной геометрии повышение геометрического фактора собственной добротности соленоида, снижение тепловых потерь в проводнике соленоида и повышение амплитудного значения тока и магнитного поля. Цель достигается путем изготовления соленоида из одинаковых включенных «в параллель» двухсекционных катушек, обе секции которых намотаны прямоугольной шиной, уложенной по раскручивающимся в противоположных направлениях спиралям. Переход проводника из одной секции в другую происходит на внутреннем слое катушки, для чего перед выполнением намотки шина подвергается пластической деформации типа «сдвиг» в середине ее длины на величину, равную сумме ширины шины и толщины межсекционной изоляции. Для предупреждения возможного электрического пробоя между секциями и по бокам каждой катушки вклеиваются прокладки-шайбы из электроизоляционного материала. Соленоид подвергают охлаждению путем погружения его в хладагент. 5 ил.

Изобретение относится к электротехнике, в частности к конструкции блока резисторов в электротранспорте. Блок самовентилируемых резисторов имеет установленные в виде рядов резистивные элементы в опорно-крепежной арматуре и токовыводы, соединенные с узлом электрических подключений. Резистивные элементы электрически и механически соединены между собой. Каждый из рядов резистивных элементов составлен из вертикально ориентированных воздухопрозрачных спиралей, навитых из круглой тугоплавкой формодержащей металлической проволоки диаметром 1,5-5 мм, с шагом спирали не менее 1,5 диаметров проволоки и диаметром навивки не более 12 диаметров проволоки. Спирали установлены между верхними и нижними токоведущими держателями и закреплены на них через свои крайние витки. Технический результат заключается в снижении рабочей температуры блока резисторов при снижении его габаритов и массы. 5 з.п. ф-лы, 5 ил.

Изобретение относится к области конструирования нагрузочных резисторов и систем, их объединяющих, для использования в силовых цепях автономных энергоустановок. Устройство балластное содержит нагрузочные резисторы, изоляторы, крепежную раму, выводные шины. Нагрузочные резисторы образованы дистанционно друг от друга послойно расположенными токопроводящими пластинами. Каждая пластина имеет вырезы с образованием зигзагообразной ленты с параллельными продольными, поворотными и концевыми участками. Пластины в поперечном направлении сдвинуты относительно друг друга. С внешней стороны крайних параллельных продольных участков ленты каждой пластины расположены проушины подвода и отвода электротока, а концевые и поворотные участки лент пластин нагрузочного резистора размещены в краевых изоляторах. Нагрузочные резисторы объединены в группы соединением изоляторов с образованием не менее двух несущих ферм. Технический результат группы изобретений - значительное увеличение эффективности энергосброса и надежности функционирования балластного устройства при одновременном уменьшении занимаемых удельных площадей, объемов и массы. 2 н. и 14 з.п. ф-лы, 11 ил.

Изобретение касается модуля сопротивления для повышения пускового момента для ротора электрической машины, имеющей обмотку ротора, и возбудителя ротора и электрической машины, которые имеют соответственно по меньшей мере один такой модуль сопротивления. Для повышения пускового момента модуль сопротивления имеет: первую точку (1) подключения и вторую точку (2) подключения, по меньшей мере два электропроводящих слоя (3, 4), по меньшей мере два слоя (3, 4) электрически соединены с первой и второй точками подключения, указанные по меньшей мере два слоя (3, 4) по меньшей мере частично в окружном направлении охватывают, каждый, ось (5) модуля сопротивления и имеют, каждый, начальную точку (6) слоя и конечную точку (7) слоя; соответствующий первый изоляционный слой (8), который расположен между каждыми двумя слоями (3, 4); соответствующую точку (9) соединения, в которой конечная точка (7) каждого слоя (3, 4) электрически соединена с начальной точкой (6) каждого следующего слоя (3,4). 4 н. и 28 з.п. ф-лы, 5 ил.
Наверх