Лазерное фосфатное стекло

Лазерное фосфатное стекло включает P2O5, Al2О3, В2О3, К2O, Na2O, MgO, CaO, SrO, BaO, Nd2O3, CeO2, SiO2 и Nb2O5 при следующем соотношении компонентов (мас.%): Р2O5 52-66, Al2O3 3-6, В2O3 0,3-3,3, К2О 3-8, Na2O 1,5-5,5, MgO 0,2-2,1, CaO 0,1-3, SrO 2-17, BaO 0,5-21, Nd2O3 0,5-6, CeO2 0,1-1,5, SiO2 0,5-3, Nb2O5 1,5-9. Обеспечивается создание технологичного атермального лазерного фосфатного стекла с повышенной термостойкостью и предельной мощностью накачки. 3 табл.

 

Изобретение относится к материалам для лазеров, в частности к составам лазерных фосфатных стекол.

В качестве активного материала лазера широко используется стекло на основе оксида и соединений фосфора, поскольку отличительной особенностью фосфатных лазерных стекол является высокая величина сечения генерационного перехода, что обеспечивает их максимальные генерационные параметры. Кроме того, в фосфатной системе легко получить атермальные стекла.

Однако указанные достоинства фосфатных лазерных стекол с трудом совмещаются с высокими эксплуатационными характеристиками: теплопроводностью, термостойкостью, химической устойчивостью. Например, стекло по авт. свид. СССР №355916 кл. H 01 S 3/17 1979 г., содержащее в мас.%: P2O5 49-65, Al2О3 2-9, В2О3 1,6-10, оксид щелочного металла из группы Li2O, Na2O, K2O 0,9-9,5, оксиды редкоземельных элементов, в частности Nd2O3, СеО2 0,5-7,5, оксид металлов второй группы, выбранный из группы оксидов бария, стронция, магния, кальция и кадмия - остальное.

Промышленностью выпускалось аналогичное указанному стекло марки ГЛС32 (ОСТ 3-30-77 «Стекло оптическое ГЛС. Технические условия.). Стекло относится к классу атермальных и обладает высокими генерационными характеристиками, однако оно недостаточно термически и химически устойчиво, что требует специальной защиты активных элементов.

Ближайшим по составу к предлагаемому является алюмо-боро-фосфатное стекло для высокоэнергетических лазеров по пат. США №5.526.369 кл.370-40 1996 г., содержащее в мол.%: P2O5 50-75, Al2О3>0-10, В2О3 0-10 (может частично замещаться на Y2О3), К2О>0-30, группа щелочных оксидов Li2O, Na2O, Rb2O, Cs2O 0-20, MgO 0-30, CaO 0-30, а сумма MgO и CaO>0-30, группа BeO, SrO, BaO, ZnO и PbO в сумме 0-20, оксиды редкоземельных элементов 0,01-8, из них Nd2O3 0,1-5, СеО2 0,1-1,5.

В описании патента не приводятся данные по химической устойчивости, термооптической постоянной и термостойкости этих стекол. Однако, расчет аддитивным методом [1, 2] термостойкости и термооптической постоянной W1,06 конкретных примеров стекол по патенту показал, что их термическая устойчивость мала, а величина термооптической постоянной W часто выходит за пределы, ограничивающие класс атермальных лазерных стекол (-5.10-7 К-1<W1,06<10.10-7 K-1), что существенно сужает круг их применения. Например, такие стекла нельзя использовать в лазерах, работающих в частотных режимах (мала мощность накачки, при которой происходит термическое разрушение активного элемента), а также в лазерах с малой угловой расходимостью излучения (что обеспечивается атермальными стеклами). По набору входящих компонентов и их соотношению в большинстве приведенных в прототипе составов можно предположить, что химическая устойчивость эти стекол невысока.

Задачей изобретения является создание технологичного атермального лазерного фосфатного стекла с повышенной термостойкостью и предельной мощностью накачки.

Задача решается тем, что в лазерном фосфатном стекле, содержащем, как и прототип, P2O5, Al2О3, В2О3, К2O, Na2O, MgO, CaO, SrO, BaO, Nd2O3, CeO2, указанные оксиды содержатся, мас.%:

Р2O552-66
Al2O33-6
В2O30,3-3,3
К2О3-8
Na2O1,5-5,5
MgO0,2-2,1
CaO0,1-3
SrO2-17
BaO0,5-21
Nd2O30,5-6
CeO20,1-1,5

и дополнительно введены SiO2 и Nb2О5 в соотношении:

SiO20,5-3
Nb2O51,5-9

Введение в стекло в качестве модификаторов SiO2 и Nb2O5 с указанным процентным содержанием повышает термостойкость стекла, а также улучшает ряд его технологических и эксплуатационных свойств, в частности, химическую устойчивость и кристаллизационную способность.

Конкретные составы синтезированных стекол приведены в таблице 1, составы стекол из патента-прототипа - в таблице 2, а свойства стекол из табл.1 и 2 (измеренные и рассчитанные по [1, 2]) приведены в таблице 3.

Стекла были сварены в платиновом тигле из материалов высокой степени чистоты: метафосфатов алюминия, бора, щелочных и щелочноземельных элементов, кремнезема, оксидов неодима, церия и ниобия. Кристаллизации стекол не наблюдалось за 80 часов в температурном интервале от 450°С до 1000°С.

Таблица 1
Примеры составов стекол по заявке
КомпонентыМассовые %Молекулярные %
№1№2№3№4пределы№1№2№3№4пределы
Р2O552,260,3665,3155,8752-6648,3951,0855,6949,5048-56
Al2O33,093,635,793,613-63,994,276,874,453,9-7
В2О31,323,220,330,330,3-3,32,5,560,570,590,5-6
К2O6,157,823,196,783-88,589,964,13,9954-10
Na2O1,821,525,172,131,5-5,53,872,9410,14,332,8-10,2
SrO2,113,508,4416,712-172,684,069,8620,282,8-20,5
CaO0,140,232,770,280.1-30,330,485,380,630,3-6,0
MgO0,262,100,110,270,2-2,10,876,250,340,840,3-6,5
BaO20,511,425,190,520,5-2117,598,944,090,430,4-18
Nb2O58,81,51,54,81,5-94,360,670,682,280,6-4,5
SiO23,02,20,52,50,5-36,564,391,005,231-7
Nd2O30,51.01,46,00,5-60,20,360,512,240,2-2,3
CeO20,11,50,30,20,1-1,50,081,040,210,150,05-1,1

Таблица 2
Примеры составов стекол по прототипу
Компоненты стеклаМассовые %Молекулярные %
№11№28№3№37№11№28№3№37
Р2O552,5851,1460,1971,9651,047,059,065,0
М2О35,926,255,863,168,08,08,04,0
В2O36,4112,0
К2О13,010,8310,1615,3019,015,015,021,0
MgO2,187,0
ВаО21,1617,6316,5319,015,015,0
Nb2O50,20,1
Nd2O37,347,747,267,813,03,03,03,0
Таблица 3
Свойства стекол по заявке, прототипу и аналогу
Свойства стеколСтекла по заявкеСтекла по прототипуАналог
№1№2№3№4№11№28№3№37ГЛС32
Термооптическая постоянная W1.06. 107, K-l107,539-145-9-244,5
Коэффициент термического линейного расширения α. 107, К-1107110115109

106*
137113124129103
Коэффициент теплопроводности λ, Вт/м/К0,650,620,640,580,490,540,550,520,50
Термостойкость AT, °C63*60*62*60*42*
555153512221455440
Предельная накачка Рпр, кВт (АЭ ⊘8×100 мм)0,9*0,8*0,85*0,8*----0,4*
*) экспериментальные величины

Как видно из таблицы 3, расчетные величины термостойкости стекол по заявке превышают термостойкость стекла-аналога на 30% и превышают термостойкость стекол по прототипу до 2,5 раз. Это подтверждается экспериментальными результатами. Термостойкость образцов 010×30 мм стекол по заявке, измеренная методом термоудара, составляет не менее 60°С, что в 1,5 раза выше, чем у промышленного стекла ГЛС32.

С термостойкостью стекла связана величина предельной мощности накачки, которую выдерживает без разрушения активный элемент при работе лазера в частотном режиме. Предельная мощность накачки активных элементов ⊘8×100 мм из заявляемых стекол составляет от 0,8 до 0,9 кВт по сравнению с предельной мощностью 0,4 кВт для активных элементов из стекла ГЛС32.

Химическая устойчивость стекол по заявке на два класса выше химической устойчивости стекла-аналога ГЛС32 (класс Б 1 и класс Г 1 соответственно).

Литература

1. О.С.Щавелев, В.А.Бабкина. Система расчета оптических и термооптических свойств фосфатных стекол по их химическому составу. Физика и химия стекла, т.3, №5, 1977, с.519-523

2. О.С.Щавелев, Н.К.Мокин, В.А. Бабкина, Н.Ю. Плуталова. Система расчета теплофизических свойств и термостойкости фосфатных стекол по их составу. Физика и химия стекла, т. 15, №4, 1989, с.614-616.

Лазерное фосфатное стекло, включающее P2O5, Al2О3, В2О3, К2O, Na2O, MgO, CaO, SrO, BaO, Nd2O3, CeO2, отличающееся тем, что оно дополнительно содержит SiO2 и Nb2O5 при следующем соотношении компонентов, мас.%:

Р2O552-66
Al2О33-6
В2O30,3-3,3
К2O3-8
Na2O1,5-5,5
MgO0,2-2,1
CaO0,1-3
SrO2-17
BaO0,5-21
Nd2O30,5-6
CeO20,1-1,5
SiO20,5-3
Nb2O51,5-9



 

Похожие патенты:
Изобретение относится к лазерной технике и может быть использовано для изготовления активных элементов лазеров на основе органических красителей и полимеров. .

Изобретение относится к квантовой электронике. .

Изобретение относится к лазерным веществам на основе органических красителей в полимерной матрице и может найти применение в лазерной технике для изготовления активных элементов перестраиваемых лазеров.

Стекло // 2237028
Изобретение относится к составам стекол, которые могут быть широко использованы в разных областях науки и техники для остекления различных объектов с сохранением светопрозрачности в период эксплуатации за счет инертности по отношению к действию плесневых грибов.

Изобретение относится к химической отрасли производства стекла, а точнее к вопросам отработки технологических режимов получения шихты для синтеза фосфатных стекол в условиях крупнотоннажного производства.

Изобретение относится к стекольной промышленности и может быть использовано для записи информации и фильтров переменной прозрачности. .

Изобретение относится к области получения фосфатных стекол с низким показателем коэффициента преломления, которые могут быть использованы в оптоэлектронной промышленности.

Стекло // 1604765
Изобретение относится к стеклам с высокой радиационной стойкостью, которые могут быть использованы для изготовления дозиметров. .

Изобретение относится к составам люминесцентных стекол, применяемых для преобразования ультрафиолетового (УФ) излучения в излучение видимого и близкого инфракрасного диапазона.

Изобретение относится к составам люминесцентных стекол, применяемых для преобразования ультрафиолетового излучения в излучение видимого и близкого инфракрасного диапазона.
Изобретение относится к области переработки жидких радиоактивных отходов

Изобретение относится к технологии получения лазерного электрооптического стекла и может быть использовано при конструировании лазерных устройств с электрооптическим управлением распространения лазерного излучения в активной среде. Изобретение позволяет создать стекло, сочетающее лазерные и электрооптические свойства. Лазерное электрооптическое фосфатное стекло включает Na2O, CaO, P2O5 , La2O3 Nd2O3, Sb2O3 при следующем соотношении компонентов, мол.%: 0,5-10 Na2O; 0,5-5 CaO; 10-30 Sb2O3; 70-61,5 P2O5; 0,1-7,4 La2O3; 7,4-0,1 Nd2O3, при этом сумма концентраций оксидов лантана и неодима составляет 7,5. Для обеспечения высоких генерационных параметров осуществлялось удаление гидроксильных групп из стекла путем барботирования расплавленной стекломассы осушенным кислородом. После осветления стекломассы производилась отливка расплавленного стекла в прогретую графитовую форму. Отливка стекла помещалась в муфельную печь, где производился грубый отжиг при температуре 380-400°С в течение двух часов с последующим инерционным охлаждением до комнатной температуры. 2 н. и 2 з.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к составам стекол, которые могут быть использованы в оптических системах. Оптическое стекло содержит, мас.%: Р2О5 16,0-17,0; BaF2 15,2-16,0; GeO2 53,0-54,0; Al2O3 13,8-15,0. Технический результат - снижение стоимости при сохранении свойств стекла. 1 табл.

Изобретение относится к люминесцентным материалам. Технический результат изобретения заключается в повышении квантового выхода люминесценции стекол с переходными металлами. Люминесцентное фосфатное стекло содержит, мол.%: Na2O – 33, P2O5 – 33, Ag2O – 0,1, Cu2O – 0,1 и ZnO – 33,5. 3 ил.
Наверх