Реактор генератора-абсорбера гелиохолодильной установки (варианты)

Изобретение относится к холодильной технике, в частности к аппаратам солнечных сорбционных холодильных установок периодического действия. Реактор генератора-абсорбера гелиохолодильной установки содержит смещенную относительно оси корпуса вверх до соприкосновения с внутренней поверхностью перфорированную трубку, подключенную к хладопроводу. С верхней стороны перфорированной трубки расположены дугообразные щелевые параллельные отверстия, выполненные в виде равномерно удаленных друг от друга щелевых дуг длиной диаметра. Внутри корпуса реактора размещены капсулы аммиаката соли, армированные изнутри металлической сеткой, выполненной в виде согнутой в цилиндрическую спираль пружины, и расположенные в несколько рядов и ярусов. Капсулы закрыты по бокам металлическими торцевыми стенками, имеющими замки, и уложены в корпусе с зазорами и без крепления между собой. В другом варианте изобретения капсулы армированы металлическими тарельчатыми сетками. В капсулах между тарельчатыми сетками могут располагаться подвижные винтообразные детали из металлического сплава с памятью формы. Использование изобретения позволит повысить холодопроизводительность всей установки. 2 н. и 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к холодильной технике, в частности к аппаратам солнечных сорбционных холодильных установок периодического действия для охлаждения фруктохранилищ, кондиционирования помещений и получения льда в районах с жарким климатом.

Известно устройство реактора генератора-абсорбера сорбционной холодильной установки, содержащее гладкотрубный цилиндрический корпус, внутрь которого засыпаются гранулы или порошок твердого сухого абсорбента (соли щелочноземельных металлов, например CaCl2, SrCl2) [см. ст. Мирзаева Ш.М., Узакова О.Х. "Абсорбционная гелиохолодильная установка", ж. "Гелиотехника", №2, 2000, с.74-78].

Недостатками этой конструкции являются:

- неполное заполнение цилиндрического корпуса сухим абсорбентом, что приводит к плохому контакту соли с поверхностью корпуса, обогреваемой солнцем днем или охлаждаемой воздухом ночью, так как реактор генератора-абсорбера расположен перпендикулярно солнечным лучам, практически под небольшим углом к горизонту;

- плохой контакт с самой горячей частью аппарата, который не обеспечивает хороший подвод тепла к внутренним частицам массы абсорбента;

- низкая теплопроводность солей обуславливает неполное протекание с ними физико-химических реакций, что приводит к значительным потерям эффективности абсорбента и неполному использованию их свойств;

- многократные циклы работы установки приводят к механическим разрушениям гранул соли (из-за постоянного расширения и сжатия молекул аммиакатов) в рассыпчатую порошковую массу, что в целом приводит к снижению холодопроизводительности всей установки.

Наиболее близким по технической сути является реактор генератора-абсорбера [Патент РФ №2137991, 1999 г.], содержащий корпус, внутри которого размещена перфорированная трубка, подключенная к хладопроводу, цилиндрическая пружина и лепестковообразные двигающиеся вертикальные пластины с заостренными подпружиненными торцевыми поверхностями и заостренным подпружиненным буртиком в средней части аппарата. Между пластинами засыпан абсорбент, который удерживается заостренными насечками. Пластины поджаты пружиной, установленной без закрепления в свободной от абсорбента части аппарата. Корпус имеет продольное внутреннее оребрение.

Недостатками этого устройства являются: конструктивные - трудность изготовления отдельных деталей (лепестковообразных пластин, перфорированной трубки корпуса реактора), сложность монтажа и сборки конструкции; эксплуатационные - попадание соли через отверстия в перфорированной трубке во внутрь ее (при вертикальном и горизонтальном расположении), заедание подпружиненного буртика пластин об отверстия трубки при перемещении его, сложность работы конструкции реактора при горизонтальной ориентации основной оси аппарата относительно земли, образование комков аммиакатов солей при срезании буртиками пластин.

Техническая задача: создание устройства, позволяющего улучшить работу реактора генератора-абсорбера.

Технический результат: повышение холодопроизводительности всей установки.

Это достигается тем, что в известном устройстве реактора генератора-абсорбера перфорированная трубка смещена относительно оси корпуса реактора вверх до соприкосновения с его внутренней поверхностью; перфорированные отверстия в верхней части трубки имеют форму поперечных равноудаленных щелевых дуг, длиной 1/4 части окружности трубки, которая подключена к хладопроводу; между трубкой и корпусом установлены спрессованные капсулы октоаммиаката соли, армированные металлической сеткой. Металлическая сетка в капсуле выполнена в виде согнутой в цилиндрическую спираль пружины. Это позволяет армированной капсуле при насыщении соли аммиаком сохранять внутри упругие свойства пружины. При десорбционных процессах уменьшается напряжение в армированной капсуле, но упругость сжатой металлической сетки, выполненной в виде спирали, сохраняется. На гладкий цилиндрический корпус снаружи нанесено селективное покрытие.

Неравномерные зазоры между капсулами обладают пружинными свойствами, и в случае расширения аммиакатов соли деформируются, компенсируя также объемные изменения.

Смещения перфорированной трубки в верхнюю часть помогают гравитационным силам удерживать перемещения аммиакатов соли в расчетном положении, а металлические сетки капсул хорошо проводят и отводят теплоту внутри реактора.

Щелеобразные дугообразные отверстия в верхней части перфорированной трубки улучшают подвод хладагента к капсулам и компенсируют деформационные сдвиги общей армированной массы капсул с аммиакатами солей. Металлические сетки капсул соприкасаются между собой и стенками корпуса реактора и работают как теплопроводящие металлические ребра.

Аммиакаты, по сравнению с сухой солью, обладают смачивающими свойствами, а следовательно, сила сцепления с сеткой металла у них высокая, и они надежно удерживаются спиралевидной конструкцией капсулы.

На чертежах схематически изображены продольный (фиг.1) и поперечный (фиг.2) разрезы предлагаемого реактора генератора-абсорбера, фиг.3 и фиг.4 - продольный и поперечный вид спиралеобразной капсулы, фиг.5 - продольный вид тарельчатой капсулы.

Реактор генератора-абсорбера содержит: цилиндрический корпус 1 с наружным селективным покрытием; внутреннюю перфорированную трубку 2 с дугообразными щелевыми параллельными отверстиями 3 в верхней части трубки, подключенную к хладопроводу 4; капсулы аммиаката соли 5, установленные в несколько ярусов и рядов вдоль оси корпуса; капсулы армированы металлической сеткой 6, выполнены в виде цилиндрических, согнутых в спираль пружин 7, и закрыты с торцов металлической торцевой стенкой 8 с замками 9.

Реактор генератора-абсорбера работает следующим образом.

В холодном состоянии (в ночное время) абсорбент (соль) 10 в капсуле 5 начинает поглощать хладагент (аммиак), образуя последовательно химические соединения по мере понижения температуры: ди-, тетра-, октоаммикаты: при этом его объем увеличивается. Внутренние силы увеличения объема давят на спиралеобразную сетку капсулы, сжимая сильнее внутреннюю часть ее и расширяя объем наружных стенок. При этом уменьшаются зазоры между соседними капсулами.

Физико-химическая реакция всего абсорбента (соли) 10 идет полностью, до аммиакоемкого соединения (октоаммиаката), если тепло реакции будет хорошо отводиться от всей его массы. Хладагент (аммиак) проникает в абсорбент (соль) 10 через дугообразные щелевые параллельные отверстия 3 перфорированной трубки 2. Теплота реакции поглощения отводится частично через стенки капсулы, армированные металлической сеткой, которые являются теплопроводящими мостами от слоев абсорбента, заключенных внутри капсулы, к наружной поверхности капсулы и далее к наружной стенке корпуса реактора.

Поскольку коэффициент теплопроводности абсорбента (соли) на три порядка ниже теплопроводности металла, то теплота реакции поглощения будет уходить через металлические стенки 8, 7, 6, 1, способствуя эффективности работы аппарата в режиме абсорбции при ее равномерном и полном протекании.

При этом увеличение объема абсорбента происходит равномерно. Этому способствуют зазоры между капсулами и равномерный отвод теплоты со всех точек реактора. Если даже это расширение вызывает перемещение какой-либо части соли из капсулы, то ни одна частица соли не попадает через щелевидное отверстие в подводящую хладагент трубку. Расположение корпуса реактора при этом должно быть горизонтальным, а применение в генераторе-абсорбере концентраторов солнечной энергии, подводящих днем тепловой поток к нижней и боковым частям корпуса реактора, значительно интенсифицирует также процесс десорбции.

В дневное время, при обогреве корпуса 1 солнечными лучами и повышении его температуры, хладагент (аммиак) десорбируется из абсорбента (соли) 10 через дугообразные щелевые параллельные отверстия 3 перфорированной трубки 2. Причем прогрев всего аммиаката соли за счет металлической сетки 7 армированных капсул 5 увеличивает эффективность процесса за счет рационального подвода теплового потока. Уменьшение объема соли в результате процесса десорбции компенсируется деформацией скрученной в спираль сетки капсулы.

В реальных условиях процесс десорбции октоаммиакатов идет не полностью, так как получить температуру нагрева, равную 160°С в плоских коллекторах, даже с концентраторами энергии трудно, поэтому аммиакаты имеют структуру тетра- или диаммиакатов, что сохраняет силы сцепления с сеткой в капсуле реактора.

Капсулы могут быть армированы сетчатыми металлическими тарелками, которые собраны в несколько рядов и соединены между собой в ряд по краям. На фиг.5 показан поперечный разрез такой капсулы, состоящей из сетки тарельчатой конструкции 11, между которыми уложены аммиакаты соли 10, капсула имеет внешнюю металлическую сетку 6, металлическую торцевую стенку 8 и замок 9.

Работа капсулы происходит аналогично вышеуказанным процессам, происходящим в ней, только деформационные процессы происходят в других направлениях.

Капсулы можно изготавливать из металлических материалов с памятью формы [3]. Такие материалы, например титано-никилиевый сплав (TiNi), при изменении температуры изменяют форму, а при возвращении температуры в первоначальное состояние принимают первоначальную форму. Поэтому если сделать капсулы из сетки сплава с заданными свойствами, то при повышении температуры объем аммиакатов солей уменьшится и сетка сожмется, а при понижении температуры, аммиакаты и сетка расширятся. Объемная компенсация сохраняется за счет зазоров между капсулами. Между сетчатыми тарелками в капсулу можно вставить скрученную винтообразную деталь 12, которая, изменяя свою форму при нагреве, рыхлит порошкообразные аммиакаты, не давая им слежаться.

Предлагаемая конструкция обеспечивает следующие преимущества:

1. На основании изучения физико-химических реакций и натурных испытаний гелиохолодильной установки в условиях Астраханского климата в июле - августе соли CaCl2 Кировочепецкого химкомбината (ТУ 3816-47, 1986 г.) уточнены температурные константы некоторых реакций, показывающих направление и интенсивность последних:

2. На основании расчетов массы аммиакатов удерживаемых силами сцепления с сетчатой конструкцией армированной капсулы:

где П - периметр контакта аммиакатов соли и сетки;

σ, Н/м - коэффициент поверхностного натяжения аммиакатов (σ≈2,5·10-2 Н/м);

V, м3 - объем аммиакатов в ячейке сетки;

ρсоли=1,2 кг/м3 - удельная плотность аммиаката соли. Чем меньше ячейка сетки, тем сильнее сила сцепления.

3. На основании расчета усилий, возникающих в капсуле при сжатии-растяжении для спиральной капсулы:

где

В - ширина спирали;

2·Н - толщина спирали;

l - длина спирали;

Е - модуль Юнга;

ϕ - допустимый угол поворота спирали в капсуле (ϕ≈20°С)

для тарельчатой капсулы

где Р - усилие, распределяемое равномерно по периметру капсульных кромок и стенки, уменьшающей угол упругости.

δ - толщина тарелки;

h - глубина тарелки;

D - диаметр;

μ - конструктивный коэффициент.

4. Повышение эффективности работы устройства, что видно из теплотехнических расчетов за счет сравнения коэффициентов теплопроводности: коэффициент теплопроводности сухой соли (абсорбента) для CaCl2 составляет λ≈0.05 (Вт/м·К), для стали λст≈50 (Вт/м·К), для алюминиевых сплавов λал≈190 (Вт/м·К).

5. Упрощение устройства, монтажа и изготовления капсул.

1. Реактор генератора-абсорбера гелиохолодильной установки, содержащий корпус с перфорированной трубкой внутри, подключенной к хладопроводу, отличающийся тем, что перфорированная трубка смещена относительно оси корпуса реактора вверх до соприкосновения с его внутренней поверхностью; перфорированные отверстия трубки, расположенные сверху трубки по ее длине, выполнены в виде параллельных щелевых дуг, равномерно удаленных друг от друга, длиной диаметра ¼ перфорированной трубки; внутри корпуса размещены капсулы аммиаката соли, армированные изнутри металлической сеткой, выполненной в виде собранной в цилиндрическую спираль пружины, и расположенные в несколько рядов и ярусов, при этом капсулы закрыты по бокам металлическими торцевыми стенками, имеющими замки, и уложены в корпусе с зазорами и без крепления между собой.

2. Реактор генератора-абсорбера гелиохолодильной установки, содержащий корпус с перфорированной трубкой внутри, подключенной к хладопроводу, отличающийся тем, что перфорированная трубка смещена относительно оси корпуса реактора вверх до соприкосновения с его внутренней поверхностью; перфорированные отверстия трубки, расположенные сверху трубки по ее длине, выполнены в виде параллельных щелевых дуг, равномерно удаленных друг от друга, длиной ¼ диаметра перфорированной трубки; внутри корпуса размещены капсулы аммиаката соли, армированные изнутри металлическими тарельчатыми сетками и расположенные в несколько рядов и ярусов, при этом капсулы закрыты по бокам металлическими торцевыми стенками, имеющими замки, и уложены в корпусе с зазорами и без крепления между собой.

3. Реактор генератора-абсорбера гелиохолодильной установки по п.2, отличающийся тем, что капсулы выполнены из металлического сплава с памятью формы, а внутри капсул между тарельчатыми сетками расположены подвижные винтообразные детали из того же сплава с памятью формы.



 

Похожие патенты:

Изобретение относится к холодильной технике, в частности к аппаратам солнечных сорбционных холодильных машин периодического действия для охлаждения фруктохранилищ, кондиционирования помещений и получения льда в районах с жарким климатом.

Изобретение относится к холодильной технике, системам кондиционирования воздуха, отопления помещений и может быть применено на транспортных средствах при использовании в качестве источника энергии выхлопных газов.

Изобретение относится к холодильной технике, к сорбционным машинам, установкам и системам, в частности к соpбционным термотрансформаторам, и может быть использовано в энергомашиностроении, в бытовых холодильниках, промышленных и торговых стационарных холодильных установках, кондиционерах, системах обогрева и охлаждения зданий, системах утилизации тепла, в медицинских и биологических термостатах, в одежде для pаботы в среде с высокой температурой при выполнении аварийных и ремонтных работ.
Изобретение относится к сорбционной технике, а именно к сорбентам паров метанола, и может быть использовано в адсорбционных холодильных машинах и тепловых насосах

Изобретение относится к самоохлаждающейся упаковке для напитков, содержащей первую полость, которая содержит предназначенный для охлаждения напиток; вторую полость, которая образует теплообменник и которая содержит жидкий хладагент и его пары; третью полость, которая содержит средство перекачивания путем адсорбции указанных паров и средство сообщения между второй полостью и третьей полостью

Изобретение относится к способу охлаждения продукта и устройству для его осуществления, которые могут быть применены, в частности, для сжижения природного газа

Изобретение относится к холодильной технике, в частности к солнечным сорбционным холодильным установкам периодического действия для хранения, замораживания и охлаждения продуктов питания, получения льда в районах с жарким климатом

Изобретение относится к тепловому насосу адсорбционного типа. Тепловой насос включает множество полых элементов, имеющих адсорбент. В полых элементах заключено рабочее вещество с возможностью перемещения между адсорбентом и областью фазового перехода. Полые элементы установлены с возможностью обтекания теплопередающей жидкостью в изменяющемся посредством вентильного устройства контуре (101) жидкости, благодаря чему полые элементы в области адсорбента вводятся в термический контакт с жидкостью. Обтекание полых элементов жидкостью чередуется циклически. В каждом положении вентильного устройства, по меньшей мере, два полых элемента обтекаются жидкостью параллельно и, по меньшей мере, два полых элемента обтекаются жидкостью последовательно друг за другом. В каждом положении вентильного устройства, по меньшей мере, две группы из множества полых элементов обтекаются параллельно. По меньшей мере, одна группа из множества полых элементов расположена непосредственно до или после теплообменника (105, 106). Количество одновременно параллельно обтекаемых полых элементов составляет, по меньшей мере, одну четверть, предпочтительно, по меньшей мере, одну треть от количества последовательно обтекаемых полых элементов. Изобретение направлено на расширение области применения теплового насоса. 2 н. и 16 з.п. ф-лы, 17 ил.

Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде. Предложен способ получения тепловой энергии в замкнутом адсорбционном цикле повышения температурного потенциала, состоящий из последовательных стадий адсорбции хладагента на адсорбенте, удаления хладагента с адсорбента (регенерации), испарения и конденсации хладагента, регенерацию адсорбента осуществляют путем его нагрева от возобновляемого источника низкопотенциального тепла, а конденсатор при этом охлаждают до низкой температуры, используя исключительно естественный перепад температур в окружающей среде. Заявленное изобретение позволяет повысить температурный потенциал источника тепла только за счет использования естественной разницы температур в окружающей среде. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде. Устройство для реализации адсорбционного цикла повышения температурного потенциала возобновляемого источника теплоты включает адсорбер, теплообменник, находящийся в контакте с гранулами адсорбента, вакуумный кран, емкость с жидким хладагентом и теплообменник, частично погруженный в жидкий хладагент. Емкость с жидким хладагентом и теплообменником является конденсатором и испарителем. В качестве адсорбента используют композитный адсорбент паров метанола, представляющий собой пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%, в качестве хладагента-адсорбтива используют спирты. Технический результат заключается в повышении температурного потенциала возобновляемого источника теплоты в замкнутом адсорбционном цикле. 3.з.п. ф-лы, 1 табл., 1 ил.
Наверх