Способ производства стали для металлокорда

Изобретение относится к области металлургии, в частности для производства стали для металлокорда. Способ включает выплавку в сталеплавильном агрегате железоуглеродистого расплава с содержанием углерода не более 0,20 (мас.%), выпуск нераскисленного металла в сталеразливочный ковш с основной футеровкой и пористой пробкой для продувки аргоном, предварительное раскисление расплава при выпуске в ковш углеродсодержащими материалами и ферросплавами, присадку в ковш шлакообразующей смеси, вакуумуглеродное раскисление в ковше металла до содержания углерода в пределах марочного состава стали, окончательную корректировку стали по химическому составу и температуре на установке «печь-ковш» и непрерывную разливку. При этом предварительное раскисление расплава осуществляют углеродсодержащим материалом с содержанием углерода не менее 99% и ферромарганцем с содержанием марганца более 70% и кремния менее 6%, а после вакуумуглеродного раскисления металла присаживают кремнийсодержащие ферросплавы. Изобретение позволяет повысить чистоту стали по неметаллическим включениям, в том числе по наиболее вредным алюмосиликатам и алюмосиликатам кальция с содержанием оксида алюминия более 50%. 2 табл.

 

Изобретение относится к области металлургии и может быть использовано при производстве стали для металлокорда.

Сталь, как исходный материал для изготовления металлокорда, подвергают холодному микроволочению на проволоку диаметром 0,10-0,35 мм. Сталь этого назначения должна обладать высокой прочностью и в то же время хорошей пластичностью, позволяющей производить безобрывное скручивание при производстве шинного корда. Изготавливают металлокорд, как правило, из высокоуглеродистой стали с очень узкими пределами колебаний по химическому составу (C, Si, Mn), ультранизким содержанием примесных элементов (P, S, Cr, Ni, Cu, Al, Ti, As, Mo) и газов (N, О, Н). Типичный химический состав стали для металлокорда обычной прочности, мас.%: 0,70-0,75 углерода, 0,15-0,25 кремния, 0,45-0,55 марганца, не более 0,015 фосфора, серы (каждого), 0,004 алюминия, титана (каждого), не более 0,005 кислорода, азота (каждого), не более 2 (см3/100 г) водорода. Для высокопрочного и ультравысокопрочного металлокорда содержание углерода в стали увеличивают до 0,80-0,85% и 0,85-0,90% соответственно.

При выплавке и разливке стали для металлокорда принимают особые меры по снижению числа недеформируемых неметаллических включений и центральной (осевой) ликвации, существенно повышающих обрывность при волочении и свивке. К высокоуглеродистой стали для шинного корда предъявляют особо жесткие требования по наличию в ней включений корунда (глинозема), которые абсолютно не деформируются даже при горячей прокатке и вызывают многочисленные обрывы при холодном волочении и свивке. Поэтому при выплавке стали для металлокорда важно максимально снизить количество высокоглиноземистых включений и контролировать размеры, химический состав и морфологию неизбежно остающихся в металле неметаллических включений.

Известен способ получения стали для металлокорда, включающий выплавку металла, выпуск его в ковш, разливку в изложницы, легирование металла ферросплавами в ковше, раскисление в ковше и изложнице, причем перед легированием металла ферросплавами в ковш вводят силикокальций с расходом 1,8-3,5 кг/т, после ввода ферросплавов присаживают алюминий в количестве 0,02-0,15 кг/т и в изложницу, дополнительно - силикокальций в количестве до 10,5 кг/т (а.с. СССР №1285014, С 21 С 7/00).

Недостатками известного способа является высокая загрязненность стали неметаллическими включениями (высокоглиноземистыми алюмосиликатами кальция и алюмосиликатами) и центральная (осевая) ликвация слитка. Предварительное раскисление углеродистого расплава силикокальцием, легирование кремнием и марганцем с последующей модификацией включений алюминием и силикокальцием приводит к большой плотности неметаллических включений в металле. Разливка в слитки характеризуется существенным развитием сегрегационных процессов при кристаллизации и, кроме того, к значительному развитию вторичного окисления металла и соответственно увеличению размеров неметаллических включений.

Известен способ производства стали для металлокорда, включающий выплавку металла с содержанием углерода не более 0,2 мас.%, раскисление, внепечную обработку на установке "печь-ковш" и непрерывную разливку, при этом до начала раскисления расплава ферросилицием при выпуске стали из печи в сталеразливочный ковш присаживают твердую шлакообразующую смесь из кварцевого песка и извести, а затем науглероживатель из расчета получения в металле более 0,55% углерода (патент Республики Беларусь №2652, С 21 С 7/00, С 22 С 33/00).

Недостатком известного способа является высокая загрязненность стали неметаллическими включениями (алюмосиликатами и кремнеземом). Раскисление высокоокисленного расплава наиболее предпочтительным из раскислителей (углеродом) без вакуумной обработки не позволяет снизить содержание кислорода до концентраций, предотвращающих образование при раскислении металла кремнием или кремнием с марганцем силикатов марганца, обогащенных кремнеземом, и чистого кремнезема. Указанные продукты раскисления, даже при относительно крупных размерах, очень медленно удаляются из расплава и при неизбежном повышении раскислительной способности кремния с понижением температуры металла в процессе разливки и кристаллизации могут только расти (облегченное для роста включений гетерогенное зарождение).

Наиболее близким по технической сущности и достигаемому результату является способ производства стали для металлокорда, включающий выплавку в дуговой сталеплавильной печи железоуглеродистого расплава с содержанием углерода не более 0,20 мас.%, выпуск нераскисленного металла в ковш с основной футеровкой и оснащенного пористой пробкой для продувки аргоном, обработку расплава при выпуске из печи в ковш углеродсодержащими материалами и ферросплавами (кремния и марганца) без использования алюминия до полуспокойного состояния, присадку в ковш шлакообразующей смеси, вакуумирование расплава в ковше, обработку на установке «печь-ковш» с тонким регулированием химсостава и непрерывную разливку стали (ТИ 840-С-07-2000).

Способ позволяет повысить чистоту металла за счет развития наиболее эффективного раскисления полуспокойного расплава углеродом в вакууме, учитывая, что продукт раскисления газообразный - оксид углерода, не загрязняет металл. Однако предварительное раскисление даже переокисленного расплава на выпуске из печи в ковш ферросплавами кремния (ферросилиция) приводит к образованию обогащенных кремнеземом силикатов марганца и даже чистого кремнезема, которые очень медленно удаляются из расплава и не восстанавливаются в вакууме углеродом при последующей обработке на вакууматоре.

Недостатком известного способа является относительно высокая загрязненность стали неметаллическими включениями (алюмосиликатами с содержанием оксида алюминия более 50%).

Техническим результатом предлагаемого изобретения является повышение чистоты стали по неметаллическим включениям.

Предлагаемый способ производства стали для металлокорда включает выплавку в сталеплавильном агрегате железоуглеродистого расплава с содержанием углерода не более 0,20 мас.%, выпуск нераскисленного металла в сталеразливочный ковш с основной футеровкой и оснащенный пористой пробкой для продувки аргоном, обработку расплава при выпуске в ковш углеродсодержащими материалами и ферросплавами, присадку в ковш твердой шлакообразующей смеси, вакуумирование в ковше, обработку на установке «печь-ковш» и непрерывную разливку. Поставленная задача решается тем, что обработку расплава при выпуске в ковш осуществляют углеродсодержащими материалами и ферромарганцем, а присадку кремнийсодержащих ферросплавов производят после вакуумуглеродного раскисления металла с содержанием углерода в пределах марочного состава стали.

Предварительное раскисление низкоуглеродистого расплава углеродом и ферромарганцем, содержащим более 70% марганца и менее 6% кремния, позволяет избежать образования таких продуктов раскисления как чистый кремнезем и силикатов марганца, обогащенных кремнеземом. В этом случае образуются жидкие силикаты марганца с низким содержанием кремнезема, которые быстро укрупняются и удаляются из металла в шлак, особенно при донной продувке расплава аргоном. При последующей обработке на вакууматоре неизбежно оставшиеся мелкие неметаллические включения силикатов марганца с низким содержанием кремнезема легко восстанавливаются в вакууме углеродом. Вакуумуглеродное раскисление позволяет наиболее полно удалить кислород из стали, не загрязняя ее продуктами раскисления. При прочих равных условиях (тип вакууматора, глубина разрежения в вакуумной камере, температура расплава) концентрация остаточного кислорода в металле обратно пропорциональна содержанию углерода, т.е. минимальное содержание кислорода достигается при максимальном содержании углерода, что соответствует концентрации углерода в пределах марочного состава стали. Как показывает практика, вакуумуглеродное раскисление стали при содержании углерода не менее 0,70 мас.% и остаточном давлении в вакуум-камере менее 1 Мбар позволяет снизить концентрацию кислорода в готовом металле до 0,0010 -0,0015%. Легирование кремнием до 0,25 мас.%, при данном уровне окисленности расплава, позволяет практически избежать образования кремнезема и алюмосиликатов, особенно при использовании «чистых» по алюминию кремнийсодержащих ферросплавов.

Достаточно «чистый» от неметаллических включений и однородный расплав стали марочного состава при неизбежном повышении раскислительной способности кремния, алюминия, в отличие от углерода, при понижении температуры металла в процессе разливки и кристаллизации стали существенно затрудняет зарождение и рост неметаллических включений, т.е. на заключительной стадии технологии реализуется практически гомогенный режим зарождения включений.

Таким образом, предложенный способ позволяет существенно повысить чистоту стали по неметаллическим включениям, в том числе по наиболее вредным алюмосиликатам и алюмосиликатам кальция с содержанием оксида алюминия более 50%.

Пример реализации способа.

150-тонной дуговой электропечью ОАО «Оскольский электрометаллургический комбинат» выплавляли сталь для металлокорда марки 70К. После присадки металлизованных окатышей в печь, нагрева металла до заданной температуры при содержании углерода в металле не более 0,20 мас.% осуществляли выпуск плавки в сталеразливочный ковш с основной (периклазоуглеродистой) футеровкой.

Во время выпуска стали в ковш присадили углеродсодержащий материал (науглероживатель с содержанием углерода не менее 99%) и ферромарганец (ФМн78) из расчета на нижние марочные пределы по содержанию углерода и марганца, а также шлакообразующую смесь из извести и плавикового шпата в количестве 600 кг и 120 кг соответственно. После слива в течение 5-10 мин расплав перемешивали аргоном через пористую пробку в днище ковша.

Затем металл подвергали обработке на установке порционного вакуумирования (75 циклов), где, начиная с 5 цикла, производили присадку науглероживателя на среднемарочное содержание углерода, а с 55 цикла - кремнийсодержащего ферросплава (ферросилиция марки ФС75э) на рекомендованное содержание кремния в стали.

Окончательная корректировка стали по химическому составу и температуре производилась на установке «печь-ковш». При достижении требуемой температуры ковш с металлом поступал на УНРС, где сталь разливали в заготовки сечением 300х360 мм с рабочей скоростью 0,5 м/мин.

Сравнительные данные по стали, выплавленной с использованием предлагаемого способа, и стали, выплавленной по способу, описанному в прототипе, приведены в таблицах 1 и 2. Данные по стали, произведенной с использованием предлагаемого способа (таблица 1, примеры 1-5; таблица 2, примеры 6-7) показывают, что выплавленный металл в ОАО «Оскольский электрометаллургический комбинат» по предложенному способу значительно чище по неметаллическим включениям.

Техническим результатом предлагаемого способа является повышение чистоты стали по неметаллическим включениям и соответственно улучшение технологичности переработки металла при волочении и свивке в металлокорд.

Источники информации

1. А.с. СССР №1285014, С 21 С 7/00.

2. Патент Республики Беларусь №2652, С 21 С 7/00, С 22 С 33/00.

3. ТИ 840-С-07-2000.

Таблица 1
№№ п/п№ плавкиМарка сталиСодержание углерода в металле перед выпуском из печи,% (мас.)Технологические присадки материалов в ковш при выпуске из печи, кгТехнологические присадки материалов в ковш при вакуумировании, кг
НауглероживательФерромарганецФерросилицийИзвестьПлавиковый шпатНауглероживательФерросилицийФерромарганец
11108970К0,06980830-60012040410100
22137070К0,101010840-60012040420100
33907470К0,15860825-60012040410100
44850170К0,20780820-60012040410100
51109270К0,22760830-60012040420100
64851470К0,10810850330600120200110100
71109570К0,15710830450600120200-100

Таблица 2
№№ п/п№ плавкиПлотность неметаллических включений в катанке ⊘ в 6,5 мм, вкл./см2, общая/включений с содержанием Al2O3>50%Размер неметаллических включений в катанке ⊘ 6,5 мм,%
1-2 мкм3-4 мкм5-6 мкм
11108962/098,31,7-
22137073/095,94,1-
33907484/094,06,0-
44850197/090,79,3-
511092185/1580,015,14,9
648514397/8278,115,16,8
711095486/9870,220,09,8

Способ производства стали для металлокорда, включающий выплавку в сталеплавильном агрегате железоуглеродистого расплава с содержанием углерода не более 0,20 мас.%, выпуск нераскисленного металла в сталеразливочный ковш с основной футеровкой и пористой пробкой для продувки аргоном, предварительное раскисление расплава при выпуске в ковш углеродсодержащими материалами и ферросплавами, присадку в ковш шлакообразующей смеси, вакуумуглеродное раскисление в ковше металла до содержания углерода в пределах марочного состава стали, окончательную корректировку стали по химическому составу и температуре на установке «печь-ковш» и непрерывную разливку, отличающийся тем, что предварительное раскисление расплава осуществляют углеродсодержащим материалом с содержанием углерода не менее 99% и ферромарганцем с содержанием марганца более 70% и кремния менее 6%, а после вакуумуглеродного раскисления металла присаживают кремнийсодержащие ферросплавы.



 

Похожие патенты:
Изобретение относится к области металлургии. .
Изобретение относится к черной металлургии, а именно к производству сталей легированных титаном с низким содержанием азота. .
Изобретение относится к черной металлургии, конкретно к способам получения низкоуглеродистых сталей с использованием установок вакуумно-окислительного рафинирования.

Изобретение относится к черной металлургии, в частности к способам внепечной обработки жидкого металла в вакууме. .

Изобретение относится к черной металлургии, конкретнее, к выплавке и внепечной обработке шарикоподшипниковой стали. .

Изобретение относится к черной металлургии, конкретнее к внепечной обработке стали в ковше с применением циркуляционного вакуумирования. .

Изобретение относится к области черной металлургии и может быть использовано при производстве ультранизкоуглеродистой стали. .

Изобретение относится к черной металлургии, в частности к вакуумной внепечной обработке жидкого металла. .

Изобретение относится к черной металлургии, а именно к фурме для обработки стали, подвергаемой в агрегатах с циркуляционным вакуумированием действию вакуума. .

Изобретение относится к агрегату для обработки вакуумированием жидкой стали. .

Изобретение относится к области черной металлургии, а именно к способам производства проката круглого сечения из низкоуглеродистой стали, и может быть использовано на металлургических заводах.

Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей для электросварных труб повышенной коррозионной стойкости, которые могут быть использованы для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении среды, в частности водные среды, содержащие ионы хлора, сероводород, углекислый газ, механические примеси и другие компоненты.
Изобретение относится к литейному производству и может быть использовано при производстве отливок с высокими механическими свойствами из различных металлов и сплавов.
Изобретение относится к металлургии, к ковшевому или внутриформенному модифицированию, и может быть использовано в литейном производстве при получении металлов и сплавов с высокими механическими свойствами.

Изобретение относится к металлургии и может быть использовано при рафинировании и модифицировании металлических расплавов. .

Изобретение относится к черной металлургии и может быть использовано для рафинирования и модифицирования черных металлов на основе железа. .

Изобретение относится к металлургии, в частности к выплавке стали в мартеновских или электросталеплавильных печах. .
Наверх