Способ определения углов ориентации подвижного объекта и устройство для его осуществления

Способ определения ориентации подвижного объекта и устройство для его осуществления относятся к области ракетно-космической техники и могут быть использованы для определения ориентации ракеты-носителя в полете. Сущность изобретения: аппаратура спутниковой навигации и три гироинтегратора одновременно определяют значения проекций вектора скорости в стартовой и связанной системе координат соответственно и передают определенные значения в бортовую цифровую вычислительную машину, которая, используя полученную информацию, определяет значения углов ориентации подвижного объекта в пространстве по алгоритму определения ориентации подвижного объекта. Техническим результатом является уменьшение размеров устройства для осуществления предлагаемого способа до 40х40х40 мм (без учета размеров бортовой цифровой вычислительной машины) при сохранении точности определения углов ориентации подвижного объекта до 4 угловых минут. 2 н.п. ф-лы, 4 ил.

 

Описание изобретения

Предлагаемое изобретение относится к области ракетно-космической техники и может быть использовано для определения ориентации ракеты-носителя (РН) в полете.

Прототипом предполагаемого изобретения является "Способ угловой ориентации объекта по сигналам спутниковых радионавигационных систем (варианты)" (RU 2185637 С1, 2002.07.20). Прототип предназначен для определения пространственной ориентации подвижных объектов интерферометрическим методом при размере базы интерферометра до нескольких метров. Техническим результатом прототипа является нахождение начального и текущего углового положения подвижного объекта без принудительного изменения ориентации векторов-баз, на концах которых расположены антенны. То есть устройство для осуществления описанного способа, принимая сигналы от двух или более разнесенных антенных устройств, определяет углы ориентации объекта, на котором расположены эти антенны.

На используемых на космодроме «Плесецк» типах РН требования к точности определения углов ориентации в полете составляет 4 угловых минуты. Такая точность определения углов ориентации РН достигается описанным прототипом при расстоянии между антеннами в несколько метров (до 10 метров). Длина используемых типов РН составляет 20-30 метров, причем, на участке выведения происходит отделение отработавших ступеней и длина РН постепенно уменьшается до нескольких метров (в зависимости от типа РН). Разместить антенные устройства прототипа на борту РН становится затруднительно.

Предлагаемый способ определения углов ориентации отличается от прототипа тем, что предполагает наличие аппаратуры спутниковой навигации с одним антенным устройством, трех гироинтеграторов, бортовой цифровой вычислительной машины и использует другой метод определения пространственной ориентации. В настоящее время на борту всех перспективных РН предполагается установка бортовой цифровой вычислительной машины.

Признаки, характеризующие предполагаемое изобретение:

1. Использование описанных ниже устройств: аппаратура спутниковой навигации с одним антенным устройством, три гироинтегратора, бортовая цифровая вычислительная машина;

2. Использование описанного ниже алгоритма определения ориентации подвижного объекта;

3. Используется следующий порядок действий: аппаратура спутниковой навигации определяет значения проекций вектора абсолютной скорости в стартовой системе координат и передает определенные значения в бортовую цифровую вычислительную машину; одновременно три гироинтегратора измеряют значения проекций кажущейся скорости в связанной системе координат и передает по каналам связи измеренные значения в бортовую цифровую вычислительную машину; бортовая цифровая вычислительная машина, используя полученную информацию, определяет значения углов ориентации объекта в пространстве по алгоритму определения ориентации подвижного объекта.

Техническим результатом является уменьшение размеров устройства для осуществления предлагаемого способа до 40×40×40 мм (без учета размеров бортовой цифровой вычислительной машины) при сохранении точности определения углов ориентации подвижного объекта до 4 угловых минут.

Блок-схема устройства для осуществления предлагаемого способа представлена на фиг.1. Устройство содержит аппаратуру спутниковой навигации, содержащую одно антенное 1, три гироинтегратора 2, 3, 4, расположенных на осях связной системы координат, бортовой цифровой вычислительной машины 5, включающей в себя алгоритм определения ориентации РН в полете 6. Выходы аппаратуры спутниковой навигации 1 и трех гироинтеграторов 2, 3, 4 соединены со входом бортовой цифровой вычислительной машины 5.

Аппаратура спутниковой навигации предназначена для получения проекций абсолютной скорости центра масс РН в инерциальной системе координат. В данном изобретении будет использована начальная стартовая система координат [3] (см. фиг.2). Начало ее совмещено с центром масс Р РН, стоящей на стартовом устройстве. Основная плоскость - плоскость горизонта. Ось Рус направлена по радиусу, соединяющему центр Земли О с точкой Р, а ось Рхс - по касательной к окружности большого круга, в плоскости которого располагается траектория выведения; ось Pzc дополняет систему до правой. В качестве аппаратуры спутниковой навигации может быть любой образец такой аппаратуры, предназначенный для ракетно-космической техники [1].

Три гироинтегратора предназначены для получения проекций кажущейся скорости центра масс РН в связанной с РН системе координат (связанной системе координат) [3] (см. фиг.3). Начало связанной системы координат располагается в центре масс Р РН. Основная плоскость совпадает с одной из плоскостей симметрии ракеты. Ось Px1 направлена вдоль продольной оси РН; ось Ру1 располагается в плоскости симметрии, совпадающей с плоскостью траектории, и направлена вверх (при горизонтальном движении ракеты над поверхностью Земли); ось Pz1 дополняет систему до правой. В качестве гироинтеграторов могут быть использованы образцы, используемые на РН «Рокот».

Необходимым условием изобретения является наличие на борту РН бортовой цифровой вычислительной машины с алгоритмами, необходимыми для определения ориентации РН в пространстве. Существует ряд образцов бортовых цифровых вычислительных машин. В частности, на используемой РН «Рокот» применяется бортовая цифровая вычислительная машина.

Для реализации предлагаемого способа и работы устройства для осуществления предлагаемого способа используется следующая последовательность действий.

Аппаратура спутниковой навигации определяет проекции вектора абсолютной скорости в стартовой системе координат и передает определенные значения в бортовую цифровую вычислительную машину. Одновременно три гироинтегратора измеряют приращения проекций кажущейся скорости за один такт (определенный временной интервал Δt) в связанной системе координат и также передает по каналам связи измеренные значения в бортовую цифровую вычислительную машину. Бортовая цифровая вычислительная машина, используя полученную информацию, определяет значения углов ориентации РН в пространстве по алгоритму определения ориентации подвижного объекта.

Алгоритм определения ориентации подвижного объекта

1. Исходные данные.

Исходными данными для расчета углов ориентации РН являются значения проекций абсолютной скорости в стартовой системе координат , , , полученные от аппаратуры спутниковой навигации, и значения приращений проекций кажущейся скорости за один такт в связанной системе координат , , , полученные от трех гироинтеграторов.

2. Определение углов ориентации РН в пространстве.

Положение связанной системы координат относительно стартовой системы координат определяется тремя углами: ϑ - углом тангажа, ψ - углом рыскания, γ - углом вращения (фиг.4).

Для перехода от связанной системы координат к стартовой системе координат используется система уравнений:

где t - момент времени определения углов ориентации, отсчитываемый от момента начала движения.

Значения проекций абсолютной скорости движения центра масс РН в связанной системе координат (t), (t), (t) определяются следующим образом:

где (t), (t), (t) - проекции ускорения РН в связанной системе координат, вызванного наличием гравитационного ускорения Земли на момент времени

(t-Δt), (t-Δt), (t-Δt) - значения проекций абсолютной скорости движения центра масс РН в связанной системе координат, вычисленные на предыдущем такте.

В качестве метода численного интегрирования для нахождения интегралов в (2) можно использовать метод трапеций как наиболее простой в реализации на цифровой вычислительной машине и приемлемый по точности.

Таким образом, в системе уравнений (1) значения (t), (t), (t), , , известны, а значения углов ϑ, ψ, γ - необходимо найти.

Система нелинейных уравнений (1) в данном алгоритме решается итерационным методом [4].

Для этого система уравнений (1) представляется в виде:

где функции

где значение параметров определяются методом наискорейшего спуска [4]:

По описанному алгоритму были проведены расчеты с целью оценки точности определения углов ориентации РН. В качестве исходных данных для расчетов применялись кинематические параметры движения РН "Циклон-3" на всем участке выведения КА "Стрела" (от 2 секунды до 2650 секунды полета РН). Показатели точности определения проекций вектора абсолютной скорости с помощью аппаратуры спутниковой навигации были приняты идентичными аппаратуре «Терминатор» [1]. Показатели точности определения проекций вектора кажущейся скорости с помощью гироинтеграторов были приняты идентичными используемому на РН "Рокот". Используемый показатель точности - среднеквадратическое отклонение определения углов ориентации. В результате точность по определению угла крена составляет на всем участке полета 4 угловых минуты. Точность по углу тангажа: до 20 секунды - до 36 угловых минут, с 20 секунды - 3 угловых минуты. Точность по углу рыскания: до 20 секунды - до 34 угловых минут, с 20 секунды - 4 угловых минут.

Массовые и габаритные характеристики составных частей образца предлагаемого устройства без учета бортовой цифровой вычислительной машины составляют:

- Аппаратура спутниковой навигации типа «Терминатор» - габаритные характеристики 220×260×80 (мм), масса 3.5 кг [1];

- Гироинтегратор - высота 250 мм, диаметр 104 мм, масса 5 кг;

Источники информации

1. Под редакцией В.Н.Харисова, А.И.Перова, В.А.Болдина, Глобальная спутниковая радионавигационная система ГЛОНАСС, М., ИПРЖР, 1998 г., 400 с.

2. Под ред. А.В.Солодова, Инженерный справочник по космической технике, М., МО СССР. 1969 г., 694 с.

3. Г.Корн и Т.Корн, Справочник по математике для научных работников и инженеров. Определения, теоремы, формулы, издание 4, М.: Наука, 1978 г., 832 с.

1. Способ определения ориентации подвижного объекта, использующий аппаратуру спутниковой навигации, отличающийся тем, что аппаратура спутниковой навигации содержит одно антенное устройство, используются три гироинтегратора, размещенных на осях связанной с объектом системы координат, используется бортовая цифровая вычислительная машина (БЦВМ), в которой реализован алгоритм определения ориентации подвижного объекта, основанный на определении элементов матрицы перехода между начальной стартовой и связанной с объектом системами координат; используется следующий порядок действий:

аппаратура спутниковой навигации и три гироинтегратора одновременно определяют значения проекций вектора скорости в стартовой и связанной с объектом системах координат соответственно и передают определенные значения в БЦВМ, которая, используя полученную информацию, определяет значения углов ориентации объекта в пространстве по алгоритму определения ориентации подвижного объекта.

2. Устройство определения ориентации подвижного объекта, содержащее бортовую цифровую вычислительную машину (БЦМБ), в которой реализован алгоритм определения ориентации подвижного объекта, основанный на определении элементов матрицы перехода между начальной стартовой и связанной с объектом системами координат, аппаратуру спутниковой навигации, содержащую одно антенное устройство, выход которой соединен со входом БЦВМ, и три гироинтегратора, расположенных на осях связанной с объектом системы координат, выходы которых соединены со входом БЦВМ.



 

Похожие патенты:

Изобретение относится к измерительным системам и может быть использовано для контроля положения подвижного железнодорожного состава. .

Изобретение относится к радионавигации и может быть использовано для решения задачи радионавигационного определения координат и скорости движущегося объекта как потребителя радионавигационной информации космической навигационной системы (КНС) в условиях действия неблагоприятного геометрического фактора.

Изобретение относится к измерительным системам и может быть использовано для контроля местоположения железнодорожных составов. .

Изобретение относится к радиотехнике и может использоваться в локации. .

Изобретение относится к определению местоположения объектов, в частности пользовательских терминалов (ПТ), с использованием средств спутниковой системы связи. .

Изобретение относится к радиотехнике и может использоваться в радиолокации и системах обработки сигналов различного вида. .

Изобретение относится к системам и способам определения местоположения беспроводного терминала в сети сотовой связи. .

Изобретение относится к области информационных и телекоммуникационных технологий и предназначено для определения положения объекта. .

Изобретение относится к области радиолокации и может быть использовано в сотовых системах связи для определения местоположения мобильной станции (МС), что является весьма актуальным при постоянном расширении сферы услуг в системах сотовой мобильной связи.

Изобретение относится к навигации, в частности к измерителям высоты полета ракеты класса "воздух-поверхность", и может быть использовано при проектировании систем управления ракет и радиовысотомеров.

Изобретение относится к технике программного позиционирования и ориентации подвижных объектов, в частности к технике угловой ориентации или позиционирования космических аппаратов.

Изобретение относится к области приборостроения и предназначено для определения угловых координат светящегося ориентира, в частности для определения направления на Солнце в системе координат космического аппарата.

Изобретение относится к специализированным устройствам вычислительной техники и может быть использовано для оценки характеристик зоны поиска и сопровождения связных космических аппаратов при организации связи с наземными станциями.

Изобретение относится к области приборостроения и может быть использовано при создании инерциальных систем управления для определения навигационных параметров управляемых подвижных объектов.

Изобретение относится к цифровым умножителям и предназначено для умножения цифрового сигнала (ЦС) на сигнал в форме периодической волны, преимущественно синусоидальной.

Изобретение относится к области управления космическими аппаратами (КА) и может быть использовано в системах ориентации спутника Земли. .

Изобретение относится к области космической навигации, в частности к системам автономной навигации. .

Изобретение относится к области приборостроения и может быть использовано при выставке бесплатформенных инерциальных навигационных систем управления
Наверх