Способ детектирования частотно-модулированных колебаний

Изобретение относится к радиотехнике для обработки радиосигналов при измерении частоты. Технический результат заключается в повышении точности. Способ детектирования заключается в одновременной обработке в двух каналах входного частотно-модулированного колебания, в одном из которых сигнал дифференцируют, а в другом - интегрируют, затем, взяв отношение напряжения на выходе канала дифференцирования к напряжению на выходе канала интегрирования и проведя инвертирование, получают напряжение, величина которого пропорциональна квадрату частоты входного частотно-модулированного колебания. После выполнения операции линеаризации - извлечения квадратного корня - получают напряжение, величина которого пропорциональна частоте входного частотно-модулированного колебания. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области радиотехники и может быть использовано в устройствах обработки радиосигналов, устройствах и приборах измерения частоты.

Известен способ детектирования (демодуляции) частотно-модулированных (ЧМ) колебаний1 (1ЧМ колебание - есть высокочастотное вторичное колебание, мгновенная частота которого прямо пропорциональна закону изменения первичного сигнала.) (см. Теория электрической связи: Учебник для Вузов/ А.Г.Зюко, Д.Д.Кловский, В.И.Коржик, М.В.Назаров./ Под ред. Д.Д.Кловского. - М.: - Радио и связь, 1998. - 432 с.; 204 ил.), сущность которого заключается в том, что ЧМ колебание предварительно преобразовывают в колебания амплитудно-частотной модуляции, амплитуда которых изменяется по закону модулирующего напряжения (первичного сигнала), а затем его детектируют с помощью обычного амплитудного детектора.

Данный способ детектирования имеет ряд недостатков, а именно наличие нелинейных искажений сигналов, которые обуславливаются характеристиками двух основных элементов частотного детектора - преобразователя вида модуляции и амплитудного детектора.

Наиболее близким по своей технической сущности к заявляемому способу детектирования ЧМ колебаний является способ, описанный в книге (Теория электрической связи: Учебник для Вузов/ А.Г.Зюко, Д.Д.Кловский, В.И.Коржик, М.В.Назаров./ Под ред. Д.Д.Кловского. - М.: - Радио и связь, 1998. - 432 с.; 204 ил.).

Данный способ-прототип предусматривает фазовое детектирование ЧМ колебаний с последующим его дифференцированием.

Недостатки этого способа детектирования ЧМ колебаний будут определяться недостатками фазового детектора, а именно детектирование ЧМ колебаний только определенной фиксированной частоты и с девиацией частоты (максимальное отклонение частоты модулированного колебания Δfmax), от его среднего значения (частоты несущего колебания fн) не больше расчетной, то есть данный способ имеет ограниченные возможности по детектированию колебаний в широком диапазоне частот и ограничения по величине девиации частоты ЧМ колебаний.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа детектирования ЧМ колебаний, реализация которого позволит расширить диапазон рабочих частот, увеличить девиацию частоты и уменьшить искажения формы ЧМ колебаний при их детектировании.

Поставленная задача решается при помощи предлагаемого способа детектирования ЧМ колебаний, сущность которого сводится к следующему.

Проведем линейную операцию над входным сигналом где ω - циклическая частота входного колебания A0 - некоторый коэффициент, пропорциональный амплитуде входного ЧМ колебания, путем его одновременного дифференцирования и интегрирования по времени

Разделив результат дифференцирования на результат интегрирования входного сигнала, получим

где КДел есть некоторый коэффициент, пропорциональный квадрату частоты входного сигнала.

После инвертирования полученного значения

получим коэффициент Квых1, пропорциональный значению квадрата частоты входного сигнала.

Проведя операцию линеаризации сигнала Квых1 путем извлечения квадратного корня

получим коэффициент Квых2, пропорциональный значению собственно частоты входного сигнала.

Таким образом, преобразовав ЧМ колебание в соответствии с математическими операциями (1)-(5), можем получить два различных напряжения Квых1, Квых2, величины которых соответственно пропорциональны квадрату частоты и собственно частоте входного ЧМ колебания. Следовательно, данный способ обработки ЧМ колебаний - есть способ их детектирования.

Отличительным признаком предложенного способа детектирования ЧМ колебаний является то, что обработка ЧМ сигнала с целью его детектирования осуществляется в соответствии с математическими операциями линейного характера, что предопределяет высокую точность и минимум искажений при детектировании ЧМ колебаний.

Способ детектирования ЧМ колебаний заключается в том, что входное ЧМ колебание одновременно обрабатывают в двух параллельных каналах, причем в одном канале сигнал дифференцируют, а во втором его интегрируют, затем, взяв отношение напряжения на выходе канала дифференцирования к напряжению на выходе канала интегрирования и проведя инвертирование, получают напряжение, величина которого пропорциональна квадрату частоты входного сигнала. После извлечения квадратного корня получают напряжение, величина которого пропорциональна частоте входного ЧМ колебания.

Данный способ детектирования может быть реализован как программным путем на базе микропроцессоров, так и в аппаратном виде.

Предлагаемый способ поясняется чертежом (фиг.1), на котором изображена блок-схема устройства, реализующего предлагаемый способ детектирования, содержащая дифференциатор 1, интегратор 2, делитель сигналов 3, инвертор 4, устройство извлечения квадратного корня (устройство линеаризации) 5.

Вход устройства соединен в параллель с входами дифференциатора 1 и интегратора 2, выходы которых соединены с соответствующими входами делителя сигналов 3, выход делителя 3 через инвертор 4 соединен со входом устройства извлечения квадратного корня 5, выход устройства извлечения квадратного корня 5 является вторым выходом устройства, а выход инвертора 4 одновременно является первым выходом устройства.

Следует заметить, что инвертор 4 без изменения сущности реализации заявляемого способа может быть размещен как перед входом интегратора 2 (фиг.2), так и между выходом интегратора 2 и входом делителя сигналов 3 (фиг.3). Первым выходом устройства в этом случае будет являться выход делителя сигналов 3.

Заявленный способ детектирования осуществляется следующим образом.

Входной ЧМ сигнал одновременно поступает на входы дифференциатора 1 и интегратора 2. После одновременного дифференцирования и интегрирования он подается на соответствующие входы делителя сигналов 3. Выполнив операцию деления и проведя инвертирование в инверторе 4, получим напряжение, величина которого пропорциональна квадрату частоты входного ЧМ колебания. При необходимости данный выходной сигнал может быть линеаризован, с этой целью он подается на вход устройства извлечения квадратного корня 5, на выходе которого получаем сигнал, величина напряжения которого пропорциональна частоте входного ЧМ колебания.

Достоинством данного способа является возможность детектирования ЧМ колебаний в широком диапазоне частот, практически без ограничения величины девиации частоты, кроме того данный способ детектирования инвариантен к паразитной амплитудной модуляции ЧМ колебаний (изменению коэффициента А0).

1. Способ детектирования частотно-модулированных колебаний при котором входное колебание дифференцируют, отличающийся тем, что вводят параллельный канал обработки, в котором входное колебание интегрируют, затем, взяв отношение напряжения на выходе канала дифференцирования к напряжению на выходе канала интегрирования и проведя инвертирование, получают напряжение, величина которого пропорциональна квадрату частоты входного частотно-модулированного колебания.

2. Способ по п.1, отличающийся тем, что выходное напряжение, полученное по п.1, дополнительно преобразовывают с целью его линеаризации для получения напряжения, величина которого пропорциональна частоте входного частотно-модулированного колебания.



 

Похожие патенты:

Изобретение относится к системам автоматического управления и может быть использовано в образцах техники, имеющих фазовую связь каналов объекта управления, а также в установках для их научного исследования.

Изобретение относится к технике связи и может использоваться для детектирования огибающей сигнала при приеме сигналов в условиях априорной неопределенности или нестабильности несущей частоты сигнала, вызванной, в частности, наличием большой величины доплеровского смещения частоты в канале связи.

Изобретение относится к радиотехнике и может быть использовано в радиоприемных устройствах для детектирования сигналов с частотной модуляцией, в устройствах синхронизации.

Изобретение относится к радиоизмерительной технике и может найти применение для адаптивной коррекции параметров динамических характеристик сложных нелинейных и нестационарных радиотехнических устройств и систем, содержащих радиокомпоненты как с аналоговыми, так и с цифровыми сигналами, например квадратурный демодулятор с АЦП на выходе, который широко используется в радиолокационных системах, пеленгаторах и гидролокационных системах с фазированными антенными решетками.

Изобретение относится к технике связи и может использоваться при приеме сигналов дискретной информации при нестабильности несущей частоты сигнала, вызванной в частности наличием большой величины доплеровского смещения частоты в канале связи.

Изобретение относится к автоматике и аналоговой вычислительной технике. .

Изобретение относится к радиотехнике, а именно к технике радиосвязи, и предназначено для использования в составе устройств цифровой обработки сигналов при обработке узкополосных сигналов с компенсацией помех при приеме сигналов с фазоразностной модуляцией.

Изобретение относится к технике детектирования и может быть использовано в устройствах выделения огибающей узкополосных сигналов. .

Изобретение относится к области радиоэлектроники и предназначено для использования в радиоприемных и радиопередающих устройствах и радиоизмерительной технике

Изобретение относится к области радиотехники и может быть использовано в устройствах обработки сигналов, устройствах и приборах измерения сдвига фаз между исследуемым и опорным колебанием
Изобретение относится к радиотехнике и средствам автоматики

Изобретение относится к области приема цифровых сигналов, передаваемых методом относительной фазовой модуляции (ОФМ), и может быть использовано для построения устройств демодуляции

Изобретение относится к способам приема цифровых сигналов, передаваемых методом относительной фазовой модуляции (ОФМ)

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции двоичных сигналов с относительной фазовой манипуляцией (ОФМ). Достигаемый технический результат - обеспечение высокоскоростной цифровой демодуляции сигналов с ОФМ. Цифровой демодулятор сигналов с относительной фазовой манипуляцией содержит аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки сигналов, первый и второй формирователи отклика канала на элементы сигнала с ОФМ, содержащие сумматор, вычитатель и регистр сдвига многоразрядных кодов, первый и второй квадратичные преобразователи и решающее устройство. 4 ил.

Система демодуляции сигнала относится к области демодуляции модулированного по фазе или по частоте сигнала и может использоваться для обнаружения движения объекта. Достигаемый технический результат - распознавание точной частоты конкретной составляющей сигнала в принятом сигнале с множественными составляющими. Система демодуляции сигнала содержит: комплексный демодулятор (110), имеющий первый вход (111) для приема модулированного по фазе входного сигнала (Si) и сконструированный для выполнения комплексного перемножения этого сигнала с аппроксимацией обратной величины фазовой модуляции; устройство (130) анализа спектра, принимающее демодулированный умноженный сигнал, произведенный комплексным демодулятором (110), и способное анализировать частотный спектр демодулированного умноженного сигнала, контроллер (140) модуляции. 3 н. и 12 з.п. ф-лы, 14 ил.

Изобретение относится к радиотехнике и может быть использовано в системах цифровой связи и радионавигации. Технический результат - повышение помехоустойчивости и достоверности приема сигналов с минимальным сдвигом частоты за счет использования свойств межсимвольных связей. Способ демодуляции сигналов с минимальной частотной манипуляцией характеризуется тем, что включает квадратурную обработку сигнала, перенос спектра сигнала из области высокой частоты в область видеочастот осуществляют в двух параллельно работающих квадратурных демодуляторах, при этом в одном из них в качестве опорных частот используются квадратурные компоненты несущей частоты единичных бит передаваемой информации, а в другом - нулевых бит, перед дифференцированием осуществляют суммирование выходных сигналов квадратурных демодуляторов, полученный сигнал дифференцируют, перед усреднением полученный сигнал подвергают двухстороннему ограничению и усилению. Устройство содержит два квадратурных демодулятора, два блока вычисления арктангенса, дифференциатор, сумматор, двухсторонний ограничитель, усилитель и схему усреднения. 2 н.п. ф-лы, 9 ил.
Изобретение относится к области радиотехники и может быть использовано в устройствах обработки радиосигналов и в приборах измерения амплитуды, частоты и фазы. Достигаемый технический результат - уменьшение времени детектирования параметров синусоидального сигнала в широком диапазоне частот без ограничения девиации частоты. Способ детектирования параметров синусоидального сигнала характеризуется тем, что определяют фазу детектируемого сигнала, сравнивают результаты, полученные в каналах обработки основного и опорного синусоидальных сигналов, первое канальное напряжение получают из входного колебания в канале путем умножения самого на себя, а второе канальное напряжение получают путем дифференцирования и интегрирования, затем перемножения проинтегрированного и продифференцированного сигналов, при этом первое выходное напряжение соответствующего канала пропорционально амплитуде детектируемого сигнала и определяется путем извлечения корня из квадрата детектируемой амплитуды, второе выходное напряжение соответствующего канала, пропорциональное частоте детектируемого сигнала, определяется как отношение канального продифференцированного сигнала к корню квадратному из разности квадрата амплитуды и первого канального напряжения, третье выходное напряжение, пропорциональное его фазе, определяется как разность интегралов второго выходного напряжения основного и опорного каналов. 1 ил.
Наверх