Комбинированный воздушно-реактивный двигатель

Комбинированный воздушно-реактивный двигатель содержит компрессор, первичные камеры сгорания, газовую турбину и реактивное сопло. За газовой турбиной и перед реактивным соплом размещена выходная камера сгорания, которая сообщается одновременно или раздельно - одиночно с самостоятельными и независимыми друг от друга газовоздушными каналами, имеющими раздельные входные отверстия. Первый из этих каналов размещен вдоль линии оси двигателя и содержит установленную на своем входном отверстии управляемую запорную заслонку, а также последовательно размещенные вдоль упомянутой линии оси компрессор, первичные камеры сгорания и газовую турбину. Второй канал является воздуховодом, входное отверстие которого оснащено управляемой запорной заслонкой, обращено в сторону передней части двигателя. Воздуховод размещен вдоль боковых сторон двигателя, и его выходное отверстие расположено по кругу в боковых стенках выходной камеры сгорания с возможностью направления потоков воздуха из воздуховода концентрично к центру выходной камеры сгорания с их столкновением, взаимным торможением и превращением кинетической энергии этих потоков воздуха в дополнительное сжатие. Выходная камера сгорания снабжена форсункой для подачи топлива в область наибольшего сжатия воздуха. Изобретение повышает экономичность двигателя. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к реактивным двигательным установкам и предназначено для применения при полетах летательных аппаратов, преимущественно скоростных самолетов, в воздушном пространстве.

Известен прямоточный воздушно-реактивный двигатель (ПВРД), за входным отверстием которого размещен диффузор, обеспечивающий сжатие воздуха скоростным его напором, за которым размещены камера сгорания и реактивное сопло (см. "Политехнический словарь" под ред. А.Ю.Ишлинского, изд. "Советская энциклопедия", M. - 1980, стр.420-421).

К недостаткам ПВРД относится возможность его применения только при скорости полета, равной 2-3,5 скорости звука, и необходимость применения при использовании ПВРД стартового устройства для взлета и разгона самолета до необходимой скорости полета.

Известен также турбореактивный двигатель (ТРД), содержащий компрессор, камеры сгорания, газовую турбину и реактивное сопло с возможным применением в его составе также размещенной за газовой турбиной форсажной камеры (см. там же стр.544-545 и 566).

Недостатком ТРД является его меньшая экономичность по сравнению с ПВРД при больших скоростях полета и необходимость подачи через компрессор дополнительной массы воздуха при сжигании топлива в форсажной камере, что приводит к необходимости усложнять устройство компрессора и повышать в связи с этим мощность газовой турбины с соответствующим увеличением массы двигателя.

Предлагаемое изобретение в виде комбинированного воздушно-реактивного двигателя (далее - КВРД) позволяет получить технический результат, заключающийся в возможности, подобно ПВРД, сжатия воздуха без применения компрессора при полете самолета с большой скоростью и способности обеспечить взлет и разгон самолета с применением предложенного КВРД без использования стартового устройства. При этом КВРД обеспечивает, как и ПВРД, более высокую экономичность по сравнению с ТРД при скорости полета, равной 2-3,5 скорости звука (см. там же, стр.420).

Указанный технический результат достигается применением КВРД, содержащего компрессор, первичные камеры сгорания, газовую турбину и реактивное сопло. Согласно изобретению за газовой турбиной и перед реактивным соплом размещена выходная камера сгорания, которая сообщается одновременно или раздельно-одиночно с самостоятельными и независимыми друг от друга газовоздушными каналами, имеющими раздельные входные отверстия. Первый из этих каналов размещен вдоль линии оси двигателя и содержит установленную на своем входном отверстии управляемую запорную заслонку, а также последовательно размещенные вдоль упомянутой линии оси компрессор, первичные камеры сгорания и газовую турбину. Второй канал является воздуховодом, входное отверстие которого оснащено управляемой запорной заслонкой, обращено в сторону передней части двигателя и совместно с воздуховодом обеспечивает возможность предварительного сжатия воздуха за счет скоростного напора его встречных потоков при полете летательного аппарата. Упомянутый воздуховод размещен вдоль боковых сторон двигателя и его выходное отверстие расположено по кругу в боковых стенках выходной камеры сгорания с возможностью направления потоков воздуха из воздуховода концентрично к центру выходной камеры сгорания с их столкновением, взаимным торможением и превращением кинетической энергии этих потоков воздуха в дополнительное сжатие. Выходная камера сгорания снабжена форсункой для подачи топлива в область наибольшего сжатия воздуха.

Как частный случай воздуховод выполнен в виде размещенного равномерно со всех сторон с внешней боковой стороны двигателя кольцевого воздуховода с круговыми относительно линии оси двигателя входным и выходным отверстиями.

Как частный случай воздуховод выполнен из размещенных с внешней боковой стороны двигателя равномерно по кругу нескольких одинаковых по размеру и форме труб со своими входными и выходными отверстиями и упомянутыми выше управляемыми запорными заслонками.

На приведенном чертеже в разрезе по осевой фронтальной плоскости показано в общем виде устройство КВРД. Стрелками на чертеже показано направление движения воздуха и продуктов сгорания.

КВРД содержит компрессор 1, первичные камеры сгорания 2, газовую турбину 3 и реактивное сопло 4. За газовой турбиной и перед реактивным соплом размещена выходная камера сгорания 5, которая сообщается с соплом 4 и вместе с тем одновременно или раздельно-одиночно с самостоятельными и независимыми друг от друга газовоздушными каналами, имеющими раздельные входные отверстия. Первый из этих каналов 6 размещается вдоль линии оси 0-0 двигателя и содержит установленную на своем входном отверстии управляемую запорную заслонку 7, а также последовательно размещенные в канале вдоль линии оси 0-0 компрессор 1, первичные камеры сгорания 2 и газовую турбину 3, в совокупности составляющие сочетание аналогичных частей турбореактивного двигателя с аналогичными особенностями функционирования. Второй канал является воздуховодом 8, входное отверстие 9 которого оснащено управляемой запорной заслонкой 10, обращено в сторону передней части двигателя и совместно с воздуховодом 8 обеспечивает возможность предварительного сжатия воздуха за счет скоростного напора его встречных потоков при полете летательного аппарата. Упомянутый воздуховод 8 размещен вдоль боковых сторон двигателя и его выходное отверстие 11 расположено по кругу в боковых стенках выходной камеры сгорания 5 с возможностью направления потоков воздуха из воздуховода 8 концентрично к центру выходной камеры сгорания с их столкновением, взаимным торможением и превращением кинетической энергии этих потоков воздуха в дополнительное сжатие. Выходная камера сгорания снабжена форсункой 12 для подачи топлива в область наибольшего сжатия воздуха.

Как частный случай воздуховод 8 выполнен в виде размещенного равномерно со всех сторон с внешней боковой стороны двигателя кольцевого воздуховода с круговыми относительно линии оси 0-0 двигателя входным 9 и выходным 11 отверстиями.

Как частный случай воздуховод 8 выполнен из размещенных с внешней боковой стороны двигателя по кругу нескольких одинаковых по размеру и форме труб со своими входными 9 и выходными 11 отверстиями и упомянутыми выше управляемыми запорными заслонками 10.

Как частный случай управляемая запорная заслонка 7 первого канала 6 выполнена в виде конусного носового обтекателя двигателя, закрывающего вход в первый канал при нахождении в переднем положении. При перемещении упомянутого конуса обтекателя в пределы полости первого канала 6 он совмещается с зазором с передней частью корпуса компрессора и открывает доступ для воздуха в первый канал. С целью повышения надежности функционирования перемещение конуса обтекателя производится по неподвижному направляющему стержню 13.

Как частный случай управляемая запорная заслонка 10 воздуховода 8 выполнена в виде профилированной пластины, соединенной снаружи с корпусом двигателя при помощи шарнира (например, в виде оси) с возможностью поворота с перекрытием входа для воздуха в воздуховод.

КВРД создает реактивную тягу следующим образом.

Используются возможности, характерные для ТРД, при старте разгоне и полете летательного аппарата. При этом с помощью компрессора 1 осуществляют сжатие воздуха, который вместе с подачей топлива направляют в первичные камеры сгорания 2. В качестве привода компрессора применяют газовую турбину 3, за которой обеспечивают возможность сжигания топлива в выходной камере сгорания 5.

Отличие выходной камеры сгорания 5 в КВРД от известной форсажной камеры, входящей в состав ТРД, по устройству и особенностям работы заключается в том, что выходная камера сгорания непосредственно сообщается с атмосферным воздухом, сжатие которого осуществляется в указанном выше входном устройстве 9 и воздуховоде за счет скоростного напора встречных потоков воздуха при полете летательного аппарата и дополнительно повышается путем создания встречных потоков воздуха в самой выходной камере сгорания. В отличие от этого в форсажную камеру ТРД сжатый воздух поступает от компрессора. Это отличие обеспечивает возможность работы КВРД в режиме ПВРД, который более экономичен по сравнению с режимом работы ТРД.

В КВРД применяются три основных режима работы.

Первый режим работы аналогичен режиму работы ТРД и применяется преимущественно при старте, разгоне и полете летательного аппарата со скоростью, меньшей, чем это необходимо для работы в режиме ПВРД. При этом управляемая запорная заслонка 7 первого канала 6 открыта, что обеспечивает свободный доступ воздуха в первый канал и далее через компрессор 1 в первичные камеры сгорания 2, а образующийся в них за счет сжигания топлива газ направляется в газовую турбину 3 и далее через выходную камеру сгорания 5 - в реактивное сопло 4 с созданием реактивной тяги. При этом возможно дополнительное сжигание топлива в выходной камере сгорания с подачей его через форсунку 12. При данном режиме работы управляемая запорная заслонка 10 воздуховода 8 закрыта.

Второй режим работы осуществляется при открытых управляемых запорных заслонках 7 и 10 первого канала 6 и воздуховода 8 с сжиганием топлива в первичных камерах сгорания 2 и выходной камере сгорания 5. Этот режим работы применяется в основном при форсаже и кратковременной работе при переходе содного из режимов работы на другой.

При третьем режиме работы осуществляется наиболее экономичный режим работы ПВРД. Применяется только при большой скорости полета. При этом управляемая запорная заслонка 7 первого канала 6 закрыта, первый канал изолирован, и воздух в него не поступает. Воздух указанным выше порядком в виде встречных потоков при полете летательного аппарата поступает в выходную камеру сгорания только из воздуховода 8, при этом управляемая запорная заслонка 10 воздуховода открыта.

С учетом приведенных особенностей работы КВРД обладает возможностями прямоточного воздушно-реактивного двигателя и вместе с тем обеспечивает взлет и разгон самолета до необходимой скорости полета без применения стартового устройства, имеет повышенную экономичность по сравнению с турбореактивным двигателем при больших скоростях полета.

1. Комбинированный воздушно-реактивный двигатель, содержащий компрессор, первичные камеры сгорания, газовую турбину и реактивное сопло, отличающийся тем, что за газовой турбиной и перед реактивным соплом размещена выходная камера сгорания, которая сообщается одновременно или раздельно-одиночно с самостоятельными и независимыми друг от друга газовоздушными каналами, имеющими раздельные входные отверстия, первый из этих каналов размещен вдоль линии оси двигателя и содержит установленную на своем входном отверстии управляемую запорную заслонку, а также последовательно размещенные вдоль упомянутой линии оси компрессор, первичные камеры сгорания и газовую турбину, а второй канал является воздуховодом, входное отверстие которого оснащено управляемой запорной заслонкой, обращено в сторону передней части двигателя и совместно с воздуховодом обеспечивает возможность предварительного сжатия воздуха за счет скоростного напора его встречных потоков при полете летательного аппарата, упомянутый воздуховод размещен вдоль боковых сторон двигателя, и его выходное отверстие расположено по кругу в боковых стенках выходной камеры сгорания с возможностью направления потоков воздуха из воздуховода концентрично к центру выходной камеры сгорания с их столкновением, взаимным торможением и превращением кинетической энергии этих потоков воздуха в дополнительное сжатие, выходная камера сгорания снабжена форсункой для подачи топлива в область наибольшего сжатия воздуха.

2. Двигатель по п.1, отличающийся тем, что как частный случай выполнения воздуховод выполнен в виде размещенного равномерно со всех сторон с внешней боковой стороны двигателя кольцевого воздуховода с круговыми относительно линии оси двигателя входным и выходным отверстиями.

3. Двигатель по п.1, отличающийся тем, что как частный случай выполнения воздуховод выполнен из размещенных с внешней боковой стороны двигателя равномерно по кругу нескольких одинаковых по размеру и форме труб со своими входными и выходными отверстиями и упомянутыми выше управляемыми запорными заслонками.



 

Похожие патенты:

Изобретение относится к авиации, более конкретно к реактивным двигателям комбинированного типа, предназначенным для летательных аппаратов, совершающим полеты в диапазоне от дозвуковых до гиперзвуковых скоростей и может быть использовано в их конструкции для повышения летно-технических характеристик.

Изобретение относится к авиации, в частности к двигателестроению. .

Изобретение относится к авиадвигателестроению. .

Изобретение относится к газотурбинным установкам, в частности к реактивному двигателю вакуумного принципа действия, и может быть использовано в воздушном, водном и наземном транспорте.
Изобретение относится к области машиностроения, в частности к авиастроению и двигателестроению, а именно к летательным аппаратам. .
Изобретение относится к области машиностроения, в частности к авиастроению и двигателестроению, а именно к летательным аппаратам. .

Изобретение относится к области авиационной и ракетно-космической техники и может быть использовано в двигательных установках летательных аппаратов. .

Изобретение относится к области реактивных двигателей, в частности к комбинированным двигательным установкам для летательных аппаратов, и может быть использовано как путем установки на летательных аппаратах, так и в качестве носителя полезной нагрузки.

Изобретение относится к авиационной технике

Изобретение относится к области космической техники, в частности к двигательным установкам летательных аппаратов для исследования планет

Изобретение относится к области авиационной и ракетной техники и может быть использовано при разработке силовой установки самолета и других летательных аппаратов с воздушно-реактивными двигателями

Изобретение относится к авиадвигателестроению

Изобретение относится к авиадвигателестроению

Изобретение относится к авиадвигателестроению

Изобретение относится к авиадвигателестроению

Изобретение относится к авиадвигателестроению

Изобретение относится к авиадвигателестроению

В гиперзвуковом двигателе, содержащем камеру сгорания, топливо после топливного насоса и перед подачей в камеру сгорания нагревается выше температуры самовоспламенения. Нагрев топлива происходит в теплообменнике, находящемся в стенках камеры сгорания или непосредственно в камере сгорания. Гиперзвуковой двигатель содержит два контура, две камеры сгорания, и одно общее реактивное сопло. Второй контур имеет профиль кольцевого прямоточного двигателя, в котором компрессор второго контура находится перед камерой сгорания. Диффузор первого контура является центральным телом кольцевого входного устройства для второго контура и может иметь возможность продольно перемещаться для настройки входного устройства. Изобретение направлено на обеспечение бесперебойной работы прямоточного двигателя и предупреждение срыва пламени. 2 н. и 5 з.п. ф-лы, 1 ил.
Наверх