Способ исследования пространственных динамических процессов в прозрачных многофазных пористых и зернистых средах

Способ исследования пространственных динамических процессов в прозрачных многофазных пористых и зернистых средах осуществляется путем заполнения среды иммерсионной жидкостью и определением показателя преломления. Для этого определяют массу среды, массу и объем иммерсионной жидкости, массу и объем среды, заполненной иммерсионной жидкостью, внутреннюю структуру среды и распределение показателя преломления. По определенным массе, объему и показателю преломления вычисляют молекулярную рефракцию среды и иммерсионной жидкости. В иммерсионную жидкость добавляют инертные прозрачные частицы с известными плотностью и показателем преломления размером меньшим характерных размеров внутренней структуры среды. В качестве материала прозрачных частиц используют стекло. Технический результат - повышение информативности определения локальной структуры среды при изменении ее состава и физических свойств. 2 з.п. ф-лы.

 

Изобретение относится к оптической диагностике пространственных динамических процессов, протекающих в прозрачных многофазных пористых и зернистых средах, и может быть использовано в химической и нефтяной промышленности, инженерной экологии. Для многих исследований характерна ситуация, при которой динамические многофазные процессы протекают в объеме пористой или зернистой среды. Примером служат тепловые и массообменные процессы в тепловых трубах, реакторах с зернистым слоем, каталитических и нефтехимических реакторах, распространение загрязнения в природных и технических средах. В подобных исследованиях необходимо определять внутреннюю структуру и состав среды. Эта задача решается, например, на основе измерения таких физических величин как плотность, показатель преломления и определения изменения их во времени и по объему среды.

Известен способ определения состава и структуры по измерению плотности и порозности образца зернистой или пористой среды пикнометрическим методом [Аэров М.Э., Тодес О.М., Наринский Д.Л. Аппараты со стационарным зернистым слоем. Л.: Химия, 1979, 176 с.], при котором измеряют массу образца среды mС, погружают образец в инертную жидкость известной плотности ρЖ и определяют общие объем VО и общую массу жидкости mО с погруженным в нее образцом. По измеренным значениям объема и массы определяют среднюю плотность материала среды по формуле:

и среднюю порозность среды по формуле:

Для обеспечения заполнения жидкостью свободного внутреннего объема образца заполнение проводят при повышенном давлении. Внутренняя структура образца прозрачной пористой или зернистой среды имеет свободный объем и из-за рассеяния света на поверхности зерен недоступна для наблюдения.

К недостаткам данного способа относятся:

- отсутствие контроля заполнения свободного объема образца жидкостью;

- невозможность определения локальной структуры образца.

Наиболее близким аналогом заявляемого способа выбран иммерсионный способ измерения показателя преломления материала зернистой среды, предназначенный для определения ее состава [Иоффе Б.В. Рефрактометрические методы химии. Л.: Химия, 1983, 352 с.]. Способ исследования пространственных динамических процессов в прозрачных многофазных пористых и зернистых средах путем заполнения среды иммерсионной жидкостью и определения показателя преломления основан на погружении исследуемого материала в виде, например, порошка в жидкость с известным показателем преломления. Для измерения показателя преломления материала порошка его рассматривают последовательно в нескольких жидкостях, в каждой из которых при помощи так называемой полоски Беке или методом интерферометрии, или с помощью других приемов определяют: больше или меньше показатель преломления вещества, чем показатель преломления данной жидкости. Таким образом, подбирают жидкость с показателем преломления, равным показателю преломления исследуемого материала, и тем самым определяют показатель преломления последнего.

К недостаткам относятся:

- невозможность определения показателя преломления при изменении состава, физических свойств в процессе измерения.

Задачей данного изобретения было найти способ исследования прозрачных многофазных пористых или зернистых сред при изменении их состава, физических свойств и внутренней структуры.

Поставленная задача достигается тем, что исследования пространственных динамических процессов в прозрачных многофазных пористых и зернистых средах осуществляется путем заполнения среды иммерсионной жидкостью и определения показателя преломления, определяют массу среды, массу и объем иммерсионной жидкости, массу и объем среды, заполненной иммерсионной жидкостью, внутреннюю структуру среды и распределение показателя преломления, а по определенным массе, объему и показателю преломления вычисляют молекулярную рефракцию среды и иммерсионной жидкости. В иммерсионную жидкость можно добавлять инертные прозрачные частицы с известными плотностью и показателем преломления размером меньшим характерных размеров внутренней структуры среды, в качестве материала прозрачных частиц используют, например, стекло.

Согласно изобретению, в заявляемом способе определение показателя преломления иммерсионным способом совмещают с определением плотности, порозности образца, плотности иммерсионной жидкости, и вычислением удельной рефракцию r, например, по формуле Лоренц-Лорентца [2]

Вначале измеряют массу, объем и показатель преломления иммерсионной жидкости, массу образца и заполняют образец иммерсионной жидкостью. После заполнения измеряют массу и объем иммерсионной жидкости с помещенным в нее образцом и по формуле (1) вычисляют среднюю плотность материала образца, а по формуле (2) вычисляют среднюю порозность образца. По измеренной плотности и показателю преломления вычисляют удельную рефракцию (3), характеризующую состав материала образца и иммерсионной жидкости.

Так как заполнение проводят иммерсионной жидкостью, то внутренняя структура образца становится видимой, что позволяет контролировать заполнение свободного внутреннего объема для исключения погрешности в измерении плотности и порозности, определять внутреннюю структуру образца и контролировать ее в процессе изменения. В том числе измерять распределение показателя преломления по объему образца. В случае изменения свойств среды или иммерсионной жидкости, например, за счет взаимодействия между ними, для контроля этих изменений в иммерсионную жидкость добавляют инертные прозрачные частицы, размер которых меньше характерных размеров внутренней структуры образца.

Пример 1. Исследования поглощения диоксида углерода в жидкости в зернистом слое.

Берутся:

1) калиброванные прозрачные стеклянные шарики диаметром 0,6 см с показателем преломления равным 1,518;

2) составляющие иммерсионной жидкости - альфабромнафталин () и декан ().

В объем альфабромнафталина добавляют порциями декан, перемешивают и измеряют при помощи рефрактометра показатель преломления до получения иммерсионной смеси с показателем преломления равным 1,518. Определяют плотность полученной иммерсионной смеси по формуле (1), взвешивая пикнометр с известным объемом, заполненный иммерсионной смесью. В прозрачную стеклянную кювету сечением 1,9×3,7 см и высотой 6 см засыпают 150 калиброванных прозрачных стеклянных шариков диаметром 0,6 см (объем каждого шарика 0,113 см3, а объем всех 150 шариков - 16,96 см3). Высота слоя шариков в кювете при нерегулярной засыпке 4,5 см, объем слоя шариков в кювете - 31,6 см3. Без учета плотности воздуха по формуле (2) определяют порозность, которая равна 0,46. Вследствие рассеяния и преломления света на поверхностях шариков наблюдение внутреннего объема слоя при этом невозможно. Заполняют слой шариков в кювете иммерсионной смесью таким образом, чтобы уровень жидкости был выше уровня слоя шариков. После заполнения иммерсионной смесью слой шариков становится прозрачным и наблюдаются контуры поверхности шариков, структура их расположения в слое, наличие, положение и смещение пузырьков воздуха внутри слоя, что характеризует внутреннюю структуру слоя и динамику ее изменения. Наблюдение прозрачного слоя шариков, заполненного иммерсионной смесью, с помощью поляризационного интерферометра показывает, что интерференционные полосы не испытывают искажения и разрыва на поверхности шариков, что указывает на оптическую однородность слоя и дает возможность измерять локальные изменения показателя преломления интерференционным способом по деформации интерференционных полос.

Многократное заполнение слоя шариков иммерсионной смесью при визуальном контроле отсутствия пузырьков воздуха и удаления их из слоя, измерение массы и объема слоя шариков, заполненного иммерсионной смесью, и вычисление по формуле (2) порозности показывает, что среднее отклонение полученных значений порозности от значения, полученного на сухом слое (0,46), составляет величину 0,0069 (1,5%).

Пример 2. Исследования динамики растворения компонента в иммерсионной жидкости в зернистом слое.

Берутся:

1) калиброванные прозрачные стеклянные шарики диаметром 0,6 см с показателем преломления равным 1,518;

2) составляющие иммерсионной жидкости - альфабромнафталин () и декан ();

3) шарик диаметром 0,7 см из инертного мелкопористого материала.

В прозрачную стеклянную кювету помещают калиброванные прозрачные стеклянные шарики диаметром 0,6 см и шарик диаметром 0,7 см из инертного мелкопористого материала, предварительно пропитанного деканом - одним из составляющих иммерсионной смеси. Заполняют слой шариков иммерсионной смесью. После заполнения иммерсионной смесью слой шариков становится прозрачным, и наблюдаются контуры поверхности шариков, структура их расположения в слое, а также поток медленно поступающего из мелкопористого шарика декана, который из-за того, что плотность декана ниже плотности альфабромнафталина, движется вверх в зернистом слое. Увеличение концентрации декана в иммерсионной смеси приводит к изменению ее показателя преломления, и наблюдение прозрачного слоя шариков, заполненного иммерсионной смесью, с помощью поляризационного интерферометра дает возможность по изменению интерференционных полос во времени измерять скорость изменения концентрации декана. Эта скорость определяется не только потоком декана из пористого шарика в объем, но и встречным потоком альфабромнафталина в пористый шарик.

Пример 3. Исследования динамики растворения смеси компонентов в иммерсионной жидкости в зернистом слое.

Берутся:

1) калиброванные прозрачные стеклянные шарики диаметром 0,6 см с показателем преломления равным 1,518;

2) составляющие иммерсионной жидкости - альфабромнафталин () и декан ();

3) гексан ();

4) шарик диаметром 0,7 см из инертного мелкопористого материала.

В прозрачную стеклянную кювету помещают калиброванные прозрачные стеклянные шарики, как в примере 2, и шарик диаметром 0,7 см из инертного мелкопористого материала предварительно пропитанный смесью декана с гексаном в отношении по массе, например, 1:1. Заполняют слой шариков иммерсионной смесью. После заполнения иммерсионной смесью слой шариков становится прозрачным, и наблюдаются поток медленно поступающей из мелкопористого шарика смеси декана и гексана, который движется в зернистом слое. Однако соотношение между компонентами в потоке отличается от начального из-за разной плотности декана (0,7309 г/см3) и гексана (0,660 г/см3). Вследствие аддитивности рефракция смеси веществ R рефракции r1; r2 отдельных компонентов и их процентное содержание в смеси с1; с2 связаны формулой

Берут с помощью микрошприца пробу смеси из локальной области и измеряют ее массу, объем, показатель преломления и по эмпирическому выражению, предложенному Эйкманом

которое лучше удовлетворяет требованию аддитивности, вычисляют рефракцию смеси R. По известной рефракции отдельных компонентов r1 и r2 рассчитывают процентное содержание компонентов в смеси.

Предложенный метод исследования зернистых и пористых сред повышает информативность определения локальной структуры среды при изменении ее состава и физических свойств.

1. Способ исследования пространственных динамических процессов в прозрачных многофазных пористых и зернистых средах путем заполнения среды иммерсионной жидкостью и определения показателя преломления, отличающийся тем, что определяют массу среды, массу и объем иммерсионной жидкости, массу и объем среды, заполненной иммерсионной жидкостью, внутреннюю структуру среды и распределение показателя преломления, а по определенным массе, объему и показателю преломления вычисляют молекулярную рефракцию среды и иммерсионной жидкости.

2. Способ по п.1, отличающийся тем, что в иммерсионную жидкость добавляют инертные прозрачные частицы с известными плотностью и показателем преломления размером, меньшим характерных размеров внутренней структуры среды.

3. Способ по п.2, отличающийся тем, что в качестве материала прозрачных частиц используют стекло.



 

Похожие патенты:

Изобретение относится к области оптики, а именно к определению коэффициента нелинейности показателя преломления оптических сред. .

Изобретение относится к области аналитической техники, а именно к способам и средствам оценки детонационной стойкости автомобильных бензинов. .

Изобретение относится к измерению оптических характеристик веществ и может быть использовано для оптического детектирования вещественных компонентов. .

Изобретение относится к измерительной технике, а точнее к дистанционным измерениям, и может быть использовано при проектировании лазерных информационных систем и систем доставки лазерного излучения.

Изобретение относится к области контроля технологических параметров многокомпонентных растворов, а именно концентрации растворов. .

Изобретение относится к медицине, в частности к лабораторному исследованию плазмы крови с целью диагностики степени тяжести синдрома эндогенной интоксикации (СЭИ) у детей с соматической, хирургической, инфекционной патологией, особенно в клиниках новорожденных и недоношенных.

Изобретение относится к контролю качества поверхностей материалов оптическими методами, а именно к способу исследования поверхностей твердых тел, включающему формирование на плоской поверхности образца из поверхностно-активного материала однородного слоя связи толщиной, меньшей глубины проникновения поля поверхностных электромагнитных волн, возбуждаемых сколлимированным монохроматическим p-поляризованным излучением внешнего источника на границе слой связи - образец, в материал слоя связи, и регистрацию пространственного распределения интенсивности отраженного излучения фотоприемным устройством, при этом исследуемую поверхность образца ограничивают герметичным барьером высотой больше толщины слоя связи, однородный слой связи формируют путем нанесения на поверхность образца слоя жидкости, затем образец с сформированным на его поверхности жидким слоем связи помещают в жидкость, не растворимую в жидкости слоя связи, имеющую плотность меньше плотности жидкости слоя связи и показатель преломления больше действительной части эффективного показателя преломления поверхностных электромагнитных волн.

Изобретение относится к измерительной технике и может быть использовано при точных измерениях углов в атмосфере

Изобретение относится к оптико-электронному приборостроению, а именно к способам и средствам измерения показателя преломления жидких и пастообразных веществ, использующим метод предельного угла, и может быть применено при создании средств измерения как оптически прозрачных, так и оптически непрозрачных жидкостей, паст, гелей, мелкодисперсных порошков и т.п

Изобретение относится к системам анализа цифровых изображений, в частности к системам представления в цифровых изображениях заслоняемых объектов

Изобретение относится к измерительной технике, а именно к измерению показателя преломления жидкостей, газов, стекол и других прозрачных сред

Изобретение относится к области детектирования аналитов в среде

Изобретение относится к аналитическому приборостроению и может быть использовано в жидкостной хроматографии

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных твердых тел с отрицательной действительной частью диэлектрической проницаемости

Изобретение относится к измерительной технике и предназначено для бесконтактного определения времени жизни неравновесных носителей заряда в тонких полупроводниковых пластинках

Изобретение относится к физике атмосферы и может быть использовано при определении структурной характеристики показателя преломления, параметра Штреля и радиуса Фрида
Наверх