Способ деасфальтизации нефтяных остатков

Использование: в нефтепереработке, в частности в получении сырья для вторичных процессов путем очистки нефтяных остатков углеводородными растворителями. Сущность: нефтяные остатки очищают углеводородным растворителем с последующей регенерацией растворителя из деасфальтизатного и асфальтового растворов, отпаркой остатков растворителя, компремированием и рециркуляцией растворителя в процесс. На компремирование и рециркуляцию подают растворитель, очищенный от сероводорода. Растворитель подвергают абсорбции, например, моноэтаноламином для удаления сероводорода. Компремирование растворителя проводят в струйном компрессоре, рабочим телом которого являются пары растворителя, выводимые из испарителя деасфальтизатного раствора. Технический результат - сокращение потерь растворителя, снижение расхода водяного пара и повышение качества получаемых деасфальтизата и асфальта. 2 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к нефтепереработке, в частности к способам деасфальтизации нефтяных остатков углеводородными растворителями, нацеленным на получение сырья для вторичной переработки процессами каталитического крекинга и коксования.

Известен способ деасфальтизации нефтяных остатков, включающий экстракцию гудрона пропаном, регенерацию пропана из деасфальтизатного и асфальтового растворов путем нагрева и испарения в испарителях, отпаривание водяным паром остатков растворителя в отпарных колоннах с последующим компремированием газообразной части растворителя двухступенчатым поршневым газовым компрессором (Д.О.Гольдберг, Б.А.Соболев «Деасфальтизация пропаном», 1965, с.51-64).

Недостатком известного способа является малый выход деасфальтизата (20-40% на сырье процесса).

Указанный недостаток устранен в известном способе деасфальтизации нефтяных остатков, включающем экстракцию нефтяного остатка легкой бензиновой фракцией, состоящей из смеси бутанов, пентанов и гексанов, регенерацию растворителя из деасфальтизатного и асфальтового растворов в испарителях путем нагрева и испарения, отпарки водяным паром остатков растворителя из деасфальтизата и асфальта в отпарных секциях, охлаждения и конденсации растворителя и последующего отделения воды (А.С.Эйгенсон, Ю.С.Сабадаш, Б.М.Ежов, Ф.X.Маликов и др. Деасфальтизация тяжелых остатков нефти бензином (процесс ДОБЕН). в кн.: Производство моторных и котельных топлив из тяжелых остатков высокосернистых нефтей: БашНИИ НП, вып.X, 1972 г., С.17-36).

Известный способ позволяет увеличить выход деасфальтизата до 85% на сырье за счет использования легкой бензиновой фракции в качестве углеводородного растворителя, однако имеет следующие недостатки:

а) в результате высокотемпературного нагрева деасфальтизатного и, в особенности, асфальтового растворов на стадии регенерации растворителя происходит частичное разложение высококипящих соединений с образованием сероводорода, который постепенно накапливается в циркулирующем растворителе, что приводит к коррозионному разрушению аппаратов и трубопроводов установки;

б) необходимость поддерживания значительного давления в отпарных секциях (0,4 МПа), в связи с чем для полного удаления остатков растворителя из деасфальтизата и асфальта требуется подача значительного количества водяного пара;

в) заниженное давление потока паров растворителя (0,35 МПа), направляемого из отпарных секций на стадию конденсации, что требует применения низкотемпературного охлаждающего агента в конденсаторах-холодильниках и ведет к потере большого количества несконденсировавшегося газообразного растворителя, направляемого на сжигание на факел.

Вышеуказанные недостатки снижают экономичность известного способа.

Технический результат, на достижение которого направлено изобретение, состоит в удалении сероводорода из циркулирующего растворителя.

Указанный технический результат достигается тем, что в способе деасфальтизации нефтяных остатков, включающем экстракцию нефтяных остатков углеводородным растворителем, регенерацию растворителя из деасфальтизатного и асфальтового растворов в испарителях путем нагрева и испарения, отпарку водяным паром остатков растворителя от деасфальтизата и асфальта, отделение воды от растворителя, охлаждение и конденсацию паров растворителя, и его рециркуляцию в процесс деасфальтизации, согласно изобретению, растворитель после отделения от воды подвергают абсорбционной очистке от сероводорода с последующим компремированием.

В качестве углеводородного растворителя может быть использована бутан-пентановая смесь при соотношении указанных компонентов, в % мас., 80-40:20-60.

Абсорбционную очистку проводят моноэтаноламином или метилдиэтаноламином. Целесообразно абсорбционную очистку проводят при температуре 40-60°С и давлении 0,15-0,25 МПа.

Компремирование паров растворителя после абсорбционной очистки целесообразно проводить в струйном компрессоре, рабочим телом которого являются пары растворителя, выводимые из испарителя деасфальтизатного раствора.

Абсорбционная очистка растворителя от сероводорода уменьшает коррозию оборудования установки деасфальтизации, что дает возможность повысить температуру на стадии отделения растворителя от асфальта и тем самым уменьшить потери растворителя с асфальтом, улучшить качество асфальта и уменьшить расход водяного пара на стадии отпарки асфальта.

Совокупность абсорбции с компремированием перед стадией охлаждения и конденсации позволяет повысить давление паров растворителя и тем самым улучшить условия конденсации и сократить потери растворителя на стадии конденсации. Кроме того, отпадает необходимость в использовании низкотемпературного хладоагента в конденсаторе-холодильнике.

Использование струйного компрессора на стадии абсорбционной очистки и конденсации позволяет снизить давление в отпарных секциях, в результате чего улучшается качество отпарки остатков растворителя от деасфальтизата и асфальта и сокращается расход водяного пара.

Использование более легкого бутан-пентанового растворителя в указанном соотношении составляющих его компонентов позволяет получить дополнительный технический результат - снижение серы и тяжелых металлов в получаемом деасфальтизате.

На чертеже изображена принципиальная схема предлагаемого способа.

Нефтяной остаток подвергают экстракции в экстракционной колонне 1. Сверху колонны 1 выводят деасфальтизатный раствор, который нагревают в подогревателе 2 и подают в испаритель 3, где происходит испарение основной части растворителя, выводимого с верха аппарата. С низа испарителя 3 выводят деасфальтизат и далее направляют его в отпарную колонну 4, где с помощью водяного пара удаляют остатки растворителя. С низа отпарной колонны 4 выводят деасфальтизат, а сверху колонны 4 - смесь паров растворителя и воды.

С низа экстракционной колонны 1 выводят асфальтовый раствор, который нагревают в подогревателе 5 и подают в испаритель 6 с отпарной секцией, где происходит испарение и отпарка растворителя. Асфальт с низа испарителя направляют в узел охлаждения и затаривания асфальта 7. С верха испарителя 6 выводят смесь паров растворителя и воды, которую соединяют с парами из отпарной колонны 4, охлаждают в холодильнике 8 и подают в сепаратор 9. С верха сепаратора 9 поток паров растворителя после отделения воды подают в абсорбер 10, где он очищается от примесей сероводорода. Очищенный поток паров растворителя с верха абсорбера подают в приемную камеру струйного компрессора 11 для сжатия. Рабочим телом струйного компрессора является поток паров растворителя, выводимый из испарителя деасфальтизатного раствора 3. Сжатый поток растворителя после струйного компрессора 11 охлаждают и конденсируют в конденсаторе-холодильнике 12 и далее в жидком виде подают в рабочую емкость растворителя 13, а затем насосом 14 подают снова в экстракционную колонну 1 через подогреватель 15.

Способ иллюстрируется следующими примерами.

Пример 1. Гудрон западно-сибирской нефти плотностью 993,0 кг/м3, коксуемостью 13,0%, с содержанием серы 2,8%, ванадия 140 ppm, никеля 55 ppm подают в экстракционную колонну, куда также подают растворитель, состоящий из смеси 80% бутанов и 20% пентанов, в количестве 220% от массового потока подачи сырья в колонну. После проведения процесса экстракции при температуре верха колонны 120°С, низа колонны 100°С и давлении в колонне 3,0 МПа, сверху колонны выводят деасфальтизатный раствор (272,4%), а снизу - асфальтовый раствор (47,6%). Выход деасфальтизата составляет 70% масс. на сырье.

Деасфальтизатный раствор нагревают в подогревателе и подают в испаритель, где при повышенной температуре (220°С) и пониженном давлении (2,0 МПа) происходит испарение основной части растворителя (197,9%). Пары растворителя с верха испарителя направляют в сопло струйного компрессора в качестве рабочего тела, а деасфальтизат с низа испарителя выводят в отпарную колонну, где с помощью водяного пара от него удаляют остатки растворителя. С низа отпарной колонны выводят деасфальтизат. С верха отпарной колонны выводят смесь паров растворителя и воды (6,7%). В отпарной колонне поддерживают температуру 200°С, давление - 0,2 МПа.

Асфальтовый раствор из экстракционной колонны после нагрева в подогревателе подают в испаритель, где при температуре 280°С и давлении 0,2 МПа происходит испарение основной части растворителя (17,6%). Из испарителя асфальт с небольшим содержанием растворителя стекает в отпарную секцию испарителя, где водяным паром отпаривают остатки растворителя.

С низа отпарной секции выводят асфальт (30%), который направляют в узел охлаждения и затаривания. С верха испарителя выводят смесь паров растворителя и воды (18,5%). Пары растворителя и воды из отпарной секции асфальта и испарителя деасфальтизата соединяют, охлаждают и подают в сепаратор, работающий при температуре 50°С, давлении 0,17 МПа. После отделения воды пары растворителя в количестве 22,1% с верха сепаратора подают в абсорбционную колонну, где очищают от сероводорода раствором моноэтаноламина.

Очищенный растворитель выводят с верха абсорбционной колонны и подают в приемную камеру струйного компрессора. В сопло струйного компрессора в качестве рабочего тела подают пары растворителя (197,9%) из испарителя деасфальтизатного раствора. Сжатый поток растворителя с выхода струйного компрессора (220%) при температуре 170°С, давлении 0,65 МПа проходит конденсатор-холодильник и в жидком виде стекает в рабочую емкость растворителя. С низа абсорбционной колонны выводят отработанный раствор моноэтаноламина.

Из рабочей емкости жидкий растворитель насосом через нагреватель вновь направляют в экстракционную колонну.

Потери растворителя по всем стадиям процесса деасфальтизации не превышают 0,2%. Содержание сероводорода в растворителе, отобранном из рабочей емкости, не превышает 0,003%.

Полученный деасфальтизат с выходом 70% на сырье имеет следующие показатели качества: плотность - 950,3 кг/м3, коксуемость - 5,0%, содержание серы - 2,4%, ванадия - 42 ppm, никеля - 19 ppm.

Полученный асфальт с выходом 30% на сырье имеет плотность 1061,8 кг/м3, коксуемость 28%, содержание серы 3,0% и температуру размягчения 93°С.

Примеры 2, 3. Тот же гудрон, что и в примере 1, подвергли деасфальтизации согласно заявляемой технологии, но в качестве растворителя использовали бутан-пентановые смеси, с содержанием бутанов 60% (пример 2) и 40% (пример 3). Условия осуществления процесса, сведения о материальных потоках (в % масс. на сырье процесса) и показатели качества получаемых продуктов по примерам 1-3 даны в таблице.

Как следует из таблицы, циркулирующий растворитель практически не содержит сероводорода (0,003% масс.), что дало возможность (вследствие уменьшения коррозии технологического оборудования) повысить температуру в испарителе 6 (см. чертеж) с отпарной секцией до 280°С. Общие потери растворителя по предлагаемой технологии составляют 0,2% масс., что в 4 раза меньше, чем в прототипе - 0,8% масс. Кроме того, за счет снижения давления в отпарной колонне 4 и в отпарной секции испарителя 6 до 0,2 МПа и увеличения температуры в испарителе 6, удалось сократить расход водяного пара и, соответственно, количество образующейся сточной воды в 2 раза.

За счет использования более легкого растворителя улучшилось качество получаемых продуктов - деасфальтизата и асфальта: содержание тяжелых металлов в деасфальтизате снизилось ˜ в 1,5 раза.

Таким образом, предлагаемый способ позволяет улучшить технологические показатели процесса деасфальтизации и повысить его экономичность.

Таблица

Технологические показатели процесса деасфальтизации
Условия, материальные потоки иПримеры
показатели качества1234 (прототип)
12345
1. Состав циркулирующего растворителя, % масс.
- бутаны80604011,1
- пентаны20406077,0
- гексаны и выше---11,9
- содержание сероводородане выше 0,003не выше 0,003не выше 0,003до 2,0
2. Материальные потоки, % масс.
- гудрон в экстракционную колонну100100100100
- растворитель в экстракционную колонну220220220220
- деасфальтизатный раствор из экстракционной колонны272,4283,5289,8296,2
в т.ч.: деасфальтизат70778185
растворитель202,4206,5208,8211,2
- асфальтовый раствор из экстракционной колонны47,636,530,223,8
в т.ч.: асфальт30231915
растворитель17,613,511,28,8
- пары растворителя из испарителя
деасфальтизатного раствора197,9201,6203,6205,8
- деасфальтизатный раствор из испарителя74,581,986,290,4
в т.ч.: деасфальтизат70,077,081,085
растворитель4,54,95,25,4
- пары из отпарной колонны деасфальтизата6,77,47,811,1
в т.ч.: пары растворителя4,54,95,25,4
пары воды2,22,52,65,7
- деасфальтизат из отпарной колонны деасфальтизата70778185
- пары из испарителя асфальтового
раствора18,514,211,810,3
в т.ч.: пары растворителя17,613,511,28,8
пары воды0,90,70,61,5
- асфальт из испарителя асфальтового раствора30231915
- пары растворителя из сепаратора воды22,118,416,414,2
- вода из сепаратора воды3,13,23,27,2

Продолжение таблицы
12345
- сжиженный растворитель после
конденсатора-холодильника219,8219,8219,8219,2
- потери растворителя0,20,20,20,8
3. Режим проведения процесса.
Экстракционная колонна:
- температура верха, °С120130140155
- температура низа, °С100110120140
- давление, МПа3,03,03,03,0
Испаритель деасфальтизатного раствора:
- температура, °С220220220220
- давление, МПа2,02,02,02,0
Испаритель асфальтового раствора:
- температура, °С280280280240
- давление, МПа0,20,20,20,4
Отпарная колонна деасфальтизата:
- температура, °С200200200200
- давление, МПа0,20,20,20,4
Сепаратор воды:
- температура, °С505050-
- давление, МПа0,170,170,17-
Абсорбционная колонна:
- температура, °С505050-
- давление, МПа0,150,150,15-
Струйный компрессор:
- температура потока паров растворителя на выходе, °С170170170-
- давление потока на выходе, МПа0,650,650,65-
Рабочая емкость растворителя:
- температура, °С506070150
- давление, МПа0,550,550,551,8
Емкость растворителя низкого давления:
- температура, °С---35
- давление, МПа---0,3
4. Выход деасфальтизата, %70778185
5. Показатели качества деасфальтизата:
- плотность, кг/м3950,3964,9975978
- коксуемость, %5,07,88,910
- содержание серы, %2,42,52,552,6
- содержание ванадия, ppm42566880
- содержание никеля, ppm19263035

Продолжение таблицы
12345
6. Показатели качества асфальта:
- плотность, кг/м31061,81075,01080,01084,0
- коксуемость, %28344348
- содержание серы, %2,82,93,13,6
- температура размягчения, °С93106130164

1. Способ деасфальтизации нефтяных остатков углеводородным растворителем с последующей регенерацией растворителя, отпаркой остатков растворителя, компремированием растворителя и рециркуляцией его в процесс, отличающийся тем, что на компремирование и рециркуляцию подают растворитель, очищенный от сероводорода.

2. Способ по п.1, отличающийся тем, что растворитель очищают от сероводорода путем абсорбции, например, моноэтаноламином.

3. Способ по п.1 и 2, отличающийся тем, что компремирование растворителя проводят после абсорбции в струйном компрессоре, рабочим телом которого являются пары растворителя, выводимые из испарителя деасфальтизатного раствора.



 

Похожие патенты:

Изобретение относится к непрерывной проточной системе, в которой ископаемое топливо, водную текучую среду, гидроперекись и поверхностно-активное вещество подают в виде многофазной водно-органической реакционной среды в камеру для обработки ультразвуком, в которой на смесь воздействуют ультразвуком, а реакционной смеси, выходящей из камеры, дают возможность отстояться с получением раздельных водной и органической фаз.

Изобретение относится к способам деасфальтизации нефтяных остатков углеводородными растворителями для получения остаточного сырья для масляного производства или процесса каталитического крекинга и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к способам деасфальтизации тяжелых нефтяных остатков вакуумной перегонки мазутов (гудронов) сжиженными низкомолекулярными алканами для получения компонентов остаточных базовых депарафинированных масел и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к области нефтепереработки, в частности к установкам для деасфальтизации нефтяного сырья, преимущественно гудрона. .

Изобретение относится к усовершенствованию способа селективной экстракционной очистки остаточного масла, более конкретно к такому усовершенствованию, в котором для нагрева различных технологических потоков применяют прямой огневой конвекционный нагрев.

Изобретение относится к способам деасфальтизации нефтяных остатков легкими углеводородными растворителями (пропаном, бутаном и их смесями), используемым для производства масел и сырья процесса каталитического крекинга и может найти применение в нефтеперерабатывающей промышленности.

Изобретение относится к способам деасфальтизации гудронов (тяжелых нефтяных остатков вакуумной перегонки мазутов) пропаном для получения компонентов остаточных базовых масел и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к способу для экономичной переработки остаточных продуктов перегонки тяжелых сырых нефтей, включающему стадии: а) подачи сырья - остатка после перегонки нефти при атмосферном давлении или в вакууме, причем 30-100% указанного сырья кипит выше 524°С, в устройство для деасфальтизации растворителями SDA, с получением потока асфальтенов и потока деасфальтизата DAO; b) переработки указанного потока асфальтенов, по меньшей мере, в одном реакторе с псевдоожиженным слоем в присутствии катализатора, где реактор эксплуатируют при общем давлении от 10,335 до 20,670 кПа, температуре 399-454°С, удельном часовом расходе жидкости от 0,1 до 1,0 ч-1 и скорости замены катализатора от 0,285 до 2,85 кг/м3 или где реактор или реакторы эксплуатируют при общем давлении от 3445 до 20,670 кПа, температуре 388-438°С, удельном часовом расходе жидкости от 0,2 до 1,5 ч-1 и скорости замены катализатора от 0,142 до 1,42 кг/м3 ; и с) переработки указанного потока деасфальтизата, по меньшей мере, в одном реакторе с псевдоожиженным слоем в присутствии катализатора, в котором на стадиях а - с общая конверсия остатка достигает более 65%

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при деасфальтизации нефтяных остатков легкими углеводородными растворителями
Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при переработке нефти

Изобретение относится к области переработки углеводородного сырья путем деасфальтизации

Изобретение относится к сольвентной деасфальтизации нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа, включающего экстракцию нефтяного остатка легким углеводородным растворителем с получением асфальтового и деасфальтизатного растворов, регенерацию растворителя из нагретого асфальтового раствора, включающую отгонку паров растворителя среднего давления однократным испарением с получением асфальта, регенерацию растворителя из нагретого деасфальтизатного раствора, включающую сверхкритическую сепарацию с получением регенерированного растворителя и деасфальтизатной фазы и отгонку паров растворителя среднего давления однократным испарением с получением деасфальтизата, а также сжатие смеси паров растворителя среднего давления. Технический результат - уменьшение количества паров растворителя среднего давления, исключение образования паров растворителя низкого давления, снижение расхода электроэнергии на циркуляцию растворителя и тепла на нагрев асфальтового и деасфальтизатного растворов, предотвращение образования водных стоков и исключение печного нагрева асфальтового раствора. 2 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способам деасфальтизации нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности для получения деасфальтизата и асфальта. Изобретение касается способа, включающего экстракцию нефтяных остатков легким углеводородным растворителем с получением асфальтового и деасфальтизатного раствора, регенерацию растворителя из асфальтового раствора, предварительно нагретого в рекуперационном теплообменнике, включающую однократное испарение паров растворителя среднего давления и отпаривание паров растворителя низкого давления, регенерацию растворителя из деасфальтизатного раствора, предварительно нагретого в рекуперационном теплообменнике, включающую сверхкритическую сепарацию с получением регенерированного растворителя, однократное испарение паров растворителя среднего давления и отпаривание паров растворителя низкого давления, а также сжатие смеси паров растворителя низкого давления с помощью струйного компрессора с последующим охлаждением, конденсацией и рециркуляцией паров растворителя среднего давления. При этом из нагретого асфальтового раствора предварительно, в условиях противоточного нагрева теплоносителем, отгоняют пары растворителя высокого давления, которые смешивают с деасфальтизатным раствором, сверхкритическую сепарацию осуществляют в поле центробежных сил с последующей термосепарацией полученных растворителя и деасфальтизатной фазы в условиях противоточного нагрева теплоносителем с получением деасфальтизатного концентрата, который используют в качестве рабочего тела струйного компрессора, а отпаривание растворителя низкого давления осуществляют путем отгонки в условиях противоточного нагрева теплоносителем или путем однократного испарения. Технический результат - уменьшение количества растворителя среднего и низкого давления, снижение расхода электроэнергии на циркуляцию растворителя, предотвращение образования водных стоков и исключение печного нагрева асфальтового раствора. 1 ил., 1 пр.

Изобретение относится к способам сольвентной деасфальтизации нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности для получения деасфальтизата и асфальта. Изобретение касается способа деасфальтизации нефтяных остатков, включающего экстракцию нефтяного остатка легким углеводородным растворителем с получением асфальтового и деасфальтизатного раствора, регенерацию растворителя из асфальтового раствора, нагретого в рекуперационном теплообменнике, включающую однократное испарение паров растворителя при среднем давлении, регенерацию растворителя из деасфальтизатного раствора, нагретого в рекуперационном теплообменнике и нагревателе, включающую сверхкритическую сепарацию с получением регенерированного растворителя и деасфальтизатной фазы, однократное испарение из нее паров растворителя при среднем давлении, а также сжатие смеси паров растворителя среднего давления струйным компрессором. Из нагретого асфальтового раствора при давлении экстракции предварительно отгоняют пары растворителя, которые смешивают с деасфальтизатным раствором, при этом отгонку осуществляют в условиях противоточного нагрева асфальтом и теплоносителем, из деасфальтизатной фазы при давлении сверхкритической сепарации предварительно отгоняют пары растворителя, которые смешивают с регенерированным растворителем, при этом отгонку осуществляют в условиях противоточного нагрева деасфальтизатом и теплоносителем, а в качестве рабочего тела струйного компрессора при сжатии смеси паров растворителя среднего давления используют часть охлажденной смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической сепарации. Технический результат - уменьшение количества паров растворителя среднего давления, исключение образования паров растворителя низкого давления, снижение расхода электроэнергии на циркуляцию растворителя и тепла на нагрев асфальтового и деасфальтизатного растворов, предотвращение образования водных стоков и исключение печного нагрева асфальтового раствора. 4 з.п. ф-лы, 1 ил.
Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа двухколонной пропановой деасфальтизации нефтяных остатков в двух последовательно соединенных экстракторах, по которому сырье смешивают с жидким пропаном, смесь охлаждают и вводят в первый экстрактор для разделения на раствор деасфальтизата I и асфальтовую фазу. Сырье смешивают с частью пропана, с вводом охлажденной смеси выше нижнего ввода оставшегося количества пропана, раствор деасфальтизата I без нагрева наверху первого экстрактора направляют вниз второго экстрактора, в котором за счет повышения температуры верха разделяют на рисайкл и раствор деасфальтизата II, с регенерацией из него пропана путем постепенного нагрева и снижения давления в испарителях пропана до давления в системе конденсации пропана, с дополнительным нагревом раствора деасфальтизата II из последнего испарителя пропана до 240-250°C, с возвратом рисайкла насосом наверх первого экстрактора, с подачей полученных продуктов в отпарные колонны, работающие без подачи в них водяного пара. Технический результат - улучшение качества деасфальтизата и асфальта, снижение энергозатрат. 1 з.п. ф-лы, 1 пр.
Изобретение относится к способу десульфуризации нефтяного масла, включающему стадию разбавления нефтяного масла-сырья подходящим органическим растворителем перед проведением реакции десульфуризации. Органический растворитель выбран из алканов, алкенов, циклических алкенов и алкинов. Концентрация растворителя в смеси из нефтяного масла-сырья и растворителя находится в диапазоне 0,1-70%. Проведение реакции смеси нефтяное масло-растворитель с натрием при температуре в диапазоне 240-350°C и давлении в диапазоне 0-500 фунт/кв. дюйм (0-3,45 МПа) в течение 15 минут-4 часов при перемешивании, чтобы получить конечную смесь, содержащую обессеренное нефтяное масло. Технический результат - снижение содержания асфальтена в нефтяном масле, улучшение вязкости обессеренного нефтяного масла, снижение содержания остаточного натрия. 9 з.п. ф-лы, 4 табл., 3 пр.
Наверх